State of New Hampshire

State, County, and Municipal Population Projections: 2020-2050

Prepared by Robert Scardamalia RLS Demographics, Inc.

Office of Planning and Development

September 2022

STATE OF NEW HAMPSHIRE

 STATE, COUNTY, AND MUNICIPALPOPULATION PROJECTIONS: 2020-2050

September 2022

Since 1964, the New Hampshire Office of Planning and Development (OPD) at the New Hampshire Department of Business and Economic Affairs has prepared projections or forecasts of future population for the State and its political subdivisions. The projections are used by government agencies and private interests to guide public policy, gauge market potential and estimate future target populations. The projections can be applied directly and unaltered to guide public or private endeavors. The projections can also serve as a point of departure in developing further projection efforts or refining existing ones.

In partnership with the State's Regional Planning Commissions (RPCs), OPD presents the following report New Hampshire: State, County, and Municipal Population Projections: 2020-2050, prepared by OPD's consultant, Robert Scardamalia of RLS Demographics. This report includes details on the state, county, and municipal projections for the period 2020 through 2050 and summarizes the projections' highlights.

These projections are the first iteration and are based on the 2020 U.S. Census, with updated input of vital records information, migration data, and American Community Survey data. The last OPD projections were published in September 2016.

The projections at the state and county level combine census data with birth and death data from the NH Department of State/Division of Vital Records Administration and other sources. It is then used to develop survival and fertility rates and age-specific migration rates. The births and deaths span the decade, with rates specific to New Hampshire.

Reminder: State and county projections (with age detail) are the result of the projection model. Once these numbers are developed, municipal projections are established using the method described in the following section.

The projections are processed by a standard demographic, cohort-component method. This technique breaks the population into 36 age/gender cohorts. Each cohort has its own survival rate and migration rate. Fertility rates are also applied on an age-specific basis. The technique is processed by the model referenced above, programmed by RLS Demographics.

OPD acknowledges Robert Scardamalia of RLS Demographics for producing the projections and developing this report and the RPCs for their valued input and assistance. In addition, OPD thanks Ken Johnson of the Carsey School of Public Policy for his comments during this process.

Municipal Projections

Municipal level projections are direct products of the projections developed at the state and county levels. OPD uses a geographic step-down protocol, whereby larger geographies are projected first and the lower geographies are projected in conformance with the respective 'parent' geographic area.

In specific terms, this means that OPD projects the 10 counties, then the respective (within counties) municipalities. The sum of the 10 counties is the state total. Population totals for each lower geography must agree with the appropriate higher geography. Details on the municipal projections are described in the section titled Minor Civil Division Projections in this report.

A Few Words on Projections

Population projections are not predictions. The projection process attempts to identify probable assumptions and then extend those assumptions into the future, via a mathematical technique. By themselves, projections can serve as a general guide to likely future population trends. The projections can also serve as a beginning to alternative projection efforts. Data users are encouraged to use these projections to evaluate other projection efforts. While these projections extend out to 2050, it is important to keep in mind that the longer the forecast span, the greater the chance for errors. As in previous decades, OPD will revisit these projections and adjust the forecast depending on any changes in trends.

Table of Contents

Executive Summary 2
New Hampshire Population Change and Projections Overview 4
Demographic Cohort-Component Projections 5
Methodology Overview 6
Components of Change Analysis 6
Data Inputs. 8
2020 Age-Sex Distribution 8
Special Populations 8
Fertility Analysis 9
Migration 12
Mortality 15
Minor Civil Division Projections 20
Race and Hispanic Origin Projections 22
Sources of Data 24
Glossary 25
Appendix A: New Hampshire County Population Projections 2020 to 2050: Demographic Components of Change ReportAppendix B: New Hampshire Population Projections 2020 to 2050 by Municipality

Executive Summary

This report presents state, county, and municipal level population projections by age and sex for the period 2020 through 2050. The projections are done in five-year intervals and for fiveyear age groupings of the population to 85 and over. The report contains a single set of projections that represent a likely future based on current fertility, mortality, and migration rates as of 2020 and expected changes to 2050 . This is not a prediction of future population but rather the population outcome if the assumptions about future fertility, mortality, and migration actually occur.

Projection Highlights

- The population of the New Hampshire is projected to reach $1,501,909$ by the year 2050. This projection represents an increase of just over 124,000 or 9.0 percent from the 2020 Census population count of $1,377,533$. In 2030, the state population is projected to be $1,473,285$, and in 2040 the population is projected to increase to $1,511,770$, followed by a decline to 2050. The projected total populations for the state and counties can be found in Table 1.
- The absolute number of births is projected at first to increase slightly, to 65,800 in the period 2025 to 2030. Births will then decline to 59,600 in the 2045 to 2050 period. This short-term increase results from population growth in the number of women between the ages of 30 and 44 and the overall increase in women of childbearing age (15 to 49) even with continued low fertility rates by age of mother. The decline reflects continued low fertility rates and declining number of women of childbearing age.
- The number of deaths will increase continuously from 63,500 in the 2020 to 2025 period to 120,000 in the 2045 to 2050 period due to the aging of the Baby Boom generation.
- With the rise in deaths, New Hampshire is projected to experience natural decline (an excess of deaths over births) beginning in the 2025 to 2030 period. By the 2045 to 2050 period the State will see an increasing level of natural decline to 60,500.
- During the 2020 to 2025 period, based on the 2020 Census results and the projections model, New Hampshire is projected to experience net in-migration of 51,600. For the remainder of the projection period net in-migration is projected to be between 50,000 to 52,500 in each 5 -year time period.
- Women of childbearing age, ages 15 to 49, are projected to increase in the short-term from 291,270 in 2020 to 299,300 in 2030 . The number of women will be relatively stable through 2040 and then decline to 295,800 by 2050.

Table 1: Summary of Projected Total Population for New Hampshire and Counties

State/County	Census Cen	2025	2030	2035	2040	2045	2050
New Hampshire	$\mathbf{1 , 3 7 7 , 5 3 3}$	$\mathbf{1 , 4 3 0 , 6 0 1}$	$\mathbf{1 , 4 7 3 , 2 8 6}$	$\mathbf{1 , 5 0 1 , 0 4 5}$	$\mathbf{1 , 5 1 1 , 7 7 0}$	$\mathbf{1 , 5 0 9 , 9 5 5}$	$\mathbf{1 , 5 0 1 , 9 0 9}$
Belknap	63,705	66,371	68,635	69,872	70,366	70,338	70,103
Carroll	50,111	52,293	54,023	54,939	54,935	54,273	53,293
Cheshire	76,458	77,722	78,340	78,080	77,007	75,452	73,805
Coos	31,268	31,274	31,047	30,490	29,608	28,533	27,428
Grafton	91,118	94,984	98,030	99,463	99,711	98,998	97,777
Hillsborough	422,937	440,881	454,896	464,900	470,211	471,760	471,369
Merrimack	153,808	159,385	164,072	167,214	168,609	168,770	168,475
Rockingham	314,176	327,586	339,248	347,444	350,560	350,316	348,083
Strafford	130,889	136,162	140,565	144,214	146,813	148,384	149,435
Sullivan	43,063	43,943	44,429	44,429	43,950	43,131	42,141

The method used for projecting the population of New Hampshire counties by age and sex is a standard demographic Cohort-Component model, with baseline data inputs provided by a components of change analysis. The components include:

- Age-specific fertility patterns by age of mother and the summary Total Fertility Rate which will generate future births,
- Age-sex specific migration patterns and the summary Crude Migration Rate which will impact the future number of women of childbearing age and future births,
- Age-sex specific survivorship ratios used to age each age-sex cohort to future projection dates, and
- College enrollment, prison and nursing home residents used to calculate the non-special (household) population to which the fertility, mortality and migration rates will be applied.

Population projections are not a forecast of the future. They are the result of specific assumptions about the course of future demographic characteristics and events. To the extent those assumptions are born out in the future, the projections will be accurate. However, there are many factors, demographic, social, economic and even global that affect future trends.

Some of the factors that have been discussed in the development of these projections include very recent events, such as the impact of the COVID-19 pandemic, potential migratory effects resulting from climate change, recent indications of slowing large urban growth in favor of smaller areas, improving access to broadband in rural areas and attraction of young people and changing employment and commuting expectations. All of these represent important factors but ones for which there is no clear data. These factors should be kept in mind as the projections are used for local and statewide program implementation and planning.

New Hampshire Population Change and Projections Overview

The method used for projecting the population of New Hampshire counties by age and sex is a standard demographic Cohort-Component model. This model captures the interactive effects of the population age structure and the components of population change - fertility, mortality and migration. The demographic model provides detailed age and sex population characteristics which is critical to understanding changes in the female population and future births.

Demographic components of change are analyzed to capture the interactive effects of fertility, mortality and migration and how they impact total population change and change by age and sex. This is particularly important for projecting births which are dependent on fertility rates and the number of women of childbearing age. The number of women of childbearing age is a function of the existing age structure and future population change due to migration. This interactive effect is most important in areas of residential change, either growth or decline. Figure 1 illustrates the two phases of the projection process and the various data inputs and outputs.

Figure 1: Projection Process Phases

The State of New Hampshire has grown from 1,316,470 in the 2010 Census to 1,377,529 in the 2020 Census. The 2020 Census captured a larger than expected population when compared to the Census Bureau's 2019 population estimates figure of 1,359,711. The increase between 2010 and 2020 was over 61,000 and reflects a 4.6 percent rate of growth. The rate of growth between the 2000 and 2010 Census was higher at 6.5 percent, indicating that continued growth is likely but not at the earlier high rate. The growth in the State population is not reflected in each of the 10 counties as will be shown below. Absolute growth was highest in Hillsborough County while the fastest rate of growth was in Rockingham at 6.4 percent. Cheshire, Coos and Sullivan all lost population in the last decade with Coos having the largest absolute and percentage change loss.

The higher rate of growth between 2010 and 2020, relative to the 2019 American Community Survey (ACS) estimates, created challenges in reconciling prior Census Bureau estimates and results from the ACS with the new 2020 Census count. This was particularly true for analyzing the age and sex distribution because these detailed data from the 2020 Census will not be available until late 2022 or 2023. When the Census data is released, it will likely show changes in the age distribution (aging of the Baby Boom generation and large Millennial generation) that are not captured in the ACS distributions or in the Census Bureau's Demographic Analysis estimates discussed below.

The percent of population over age 65 in New Hampshire is 18.6 percent based on the 2019 ACS data. This high level reflects an older population than the nation at 16.0 percent. The median age in New Hampshire is 43.0 years compared to 38.2 years in the nation. As with the overall population change, New Hampshire's counties vary in age distribution and median age from a low of 36.8 in Strafford County (with a large college age population) to a high of 53.4 in Carroll County.

Demographic Cohort-Component Projections

This report presents the New Hampshire county population projections by age and sex for the period 2020 through 2050. The population is projected in 5 -year intervals and for 5 -year age cohorts of the population to 85 and over. The report contains projections for New Hampshire counties based on analysis of current fertility, mortality, and migration rates as of 2020 and age-adjusted data to reflect the total population results of the 2020 Census. Assumptions about the future course of those components of change yield projections to the year 2050. While this is a likely scenario, many factors can alter the course of future events. This is not a prediction of future population but rather the population outcome if the assumptions about future fertility, mortality, and migration are fulfilled.

Methodology Overview

The model used for the demographic projections is a standard demographic Cohort-Component method. Population is projected forward by 5 -year age-sex cohorts utilizing individual transition rates for fertility, mortality, and migration. The age-sex distribution is produced in 5-year age intervals through age 84 with an open-ended category for population 85 and over. The model is geography independent which means that its design allows for all input data to be defined specifically for each individual county. The model utilizes county specific inputs for fertility, migration, and mortality but could also use state or national rates if local data aren't available. The New Hampshire county populations are large enough to provide accurate fertility data and construction of age-specific fertility rates. However, not all counties are large enough for complete age distributions of deaths and calculation of county specific life tables for males and females. As explained below, the survival distributions use a combination of individual counties and regional aggregated death data for construction of life tables.

Note: It is important to understand that the mortality rates applied here DO NOT take account of changes in mortality as a result of the COVID-19 pandemic due to the lack of data on deaths by age and sex.

Components of Change Analysis

Following is an overview of the components analysis that is more fully described in the separate report "New Hampshire County Population Projections 2020 to 2050: Demographic Components of Change" located in Appendix A.

The measurement of population change over a given period of time is defined by a simple identity known as the demographic balancing equation. In its simplest form, the equation is stated as:
$P_{1}=P_{0}+B_{(t, t+n)}-D_{(t, t+n)}+M_{(t, t+n)}$
Where: $P_{0}=$ population at the base period,
$P_{1}=$ population at the end of period n,
$B=$ births between time t and $t+n$
$D=$ deaths between time t and $t+n$
$\mathrm{M}=$ net migrants between time t and $\mathrm{t}+\mathrm{n}$
The Population Estimates Program of the U.S. Census Bureau utilizes a nationwide methodology for estimating total population, age, race and sex characteristics at the county level which follows this basic balancing equation concept. At the city/town level, the Census Bureau
produces estimates of the total resident population only. ${ }^{1}$ These estimates, along with the 2020 Census population for all cities and towns become the basis for the Minor Civil Division (MCD) projections discussed below. The total population estimates and the 2020 Census results for the New Hampshire counties are used to define the starting point of the projections process.

Table 2 illustrates the application of the balancing equation for each 5 -year period from 2000 to 2020. While the data in Table 2 include the Decennial Census populations for 2000, 2010 and 2020, the 2005 and 2015 figures represent the Census Bureau's estimates. Given the greater increase in population between 2010 and 2020 than the estimates indicated, the 2015 estimate likely understated population growth. This affects the initial calculations of fertility and migration rates. The model was ultimately recalibrated to reflect what had to be higher levels of migration to account for the higher 2020 population count.

Table 2: New Hampshire Historical Components of Change, 2000 to 2020

	April 1, 2000	July 1, 2005	April 1, 2010	July 1, 2015	April 1, 2020
Total Population	$1,235,786$	$1,298,492$	$1,316,470$	$1,336,350$	$1,377,529$
Population Change	X	62,706	17,978	19,880	41,179
Percent Change	X	5.1%	1.4%	1.5%	3.1%
Cumulative Births	X	72,571	69,253	62,555	72,337
Cumulative Deaths	X	49,433	50,929	55,059	49,804
Natural Increase	X	23,138	18,325	7,496	22,534
Net Migration	X	39,568	-347	12,384	$-4,716$
Crude Net Migration Rate	X	3.2%	0.0%	0.9%	-0.4%

Source: U.S. Census Bureau, Decennial Census and Intercensal Estimates of Population. Births and deaths from the New Hampshire Department of State, Division of Vital Records Administration.

The Cohort-Component projection model applies the logic of the balancing equation to the individual age-sex components of the population such that 5-year age cohorts by sex are projected forward in intervals, " n ", of five years to the year 2050.

The projections process is really quite simple and has five basic steps:

1. Special populations (college, prison, and other group quarters populations) are removed from the base period population to remove potential distortions of the underlying rates.
2. Age-specific fertility rates are applied to the mid-period population of women to generate births over the 5-year period.

[^0]3. Survivorship ratios by age and gender are applied to the base year population to determine the number of survivors, who will be in the next 5-year age group at the end of the interval.
4. Age-specific migration rates are applied to the base population to calculate the number of net migrants over the interval.
5. Following the balancing equation, the end period population is equal to the survivors of the initial cohort, plus births during the interval, plus net-migrants during the interval and the addition of special populations removed in Step 1.

At the end of each 5-year interval, births become the new age 0 to 4 population and all other age categories become age $a+5$ (e.g. age 0-4 becomes age 5-9). The last category, 85 and over, is equal to the sum of the population 80 to 84 who have aged to be 85 to 89 , plus the 85 and over population which has aged to be 90 and over. This process is repeated for each 5 -year time period.

Data Inputs

2020 Age-Sex Distribution

An important factor that can affect the results is the estimation of the 2020 age-sex distribution. In the absence of the actual 2020 Census results, the age-sex distribution has been estimated using the Census Bureau's county level Demographic Analysis estimates for April 1, 2020. These estimates use a methodology similar to the demographic balancing equation whereby the 2010 population is "aged" to 2020 incorporating birth, death and estimated migration data. The age-sex structure will closely reflect the structure of the 2010 Census but doesn't account for changes other than the natural aging process.

The Demographic Analysis estimates are subject to what is called "error of closure" which is the measurable error between the estimated population and the actual Census result. This is one of the methods the Census Bureau uses to measure the accuracy of the Decennial Census and the estimates. The estimates can over or understate the Census enumerated population and that difference represents error in the estimates process. Lacking the age-sex data from the 2020 Census, the Demographic Analysis estimates have been made to equal the 2020 Census total population count for each county. This is accomplished by uniformly applying the percent difference between the estimate total and the 2020 Census total to each age-sex group.

Special Populations

A second issue of importance is special populations. Special populations reside in group quarters and include populations like college students, prisoners, military and nursing home residents. These populations impact the calculations for age-specific fertility and migration rates because they do not reflect the same behavior of the general population. In the case of fertility, college age women are not prone to having children at the same rates as their counterparts who are not in college. In the case of migration, college students do not "age in
place" as the general population. Graduating seniors often do not stay in the location of the college and are replaced each year by incoming freshmen. If these populations are not removed from the total resident population by age and sex, they will distort the resulting fertility and migration rates and create an artificial "bulge" in the age distribution as they age.

New Hampshire is home to a number of colleges and universities with large enrollments. They are primarily located in Cheshire, Grafton, Hillsborough, Merrimack and Strafford counties. The data used here are based on full-time undergraduate and graduate enrollment by age and sex from the National Center for Education Statistics. Prison populations are defined in Cheshire, Coos, Hillsborough, Merrimack, Rockingham and Strafford counties though the populations are relatively small in all but Coos, Hillsborough and Merrimack. Current data by age and sex for 2020 were not available for all facilities and was estimated based on the total inmate counts. Nursing home populations reside in each county. Only the total resident population is available, and the age-sex detail was estimated based on the age-sex distribution in the Census Bureau ACS estimates of nursing home residents for the 2015-2019 period.

Fertility Analysis

The absolute number of births projected by the Cohort-Component Projections model for each area, in each 5 -year time interval, is calculated by applying age-specific fertility rates to the number of women in the childbearing ages (women age 15 through 49). The number of male and female births is determined by applying the sex ratio at birth based on historical data. The rate is simply the number of births to women of a given age divided by the number of women in that age group. For example, the fertility rate for the 30 to 34 age group is the number of births to women age 30 to 34 divided by the number of women age 30 to 34 .

These age patterns are specific to each county. Birth data for 2019, 2020 and 2021 have been used to construct the age patterns. Births for the three years are averaged and based on the 2020 age distribution of women from the Demographic Analysis estimates. The patterns can be held constant throughout the entire projection period or altered to reflect changing assumptions about the timing of childbearing. Recent fertility data for 2021 from the National Center for Health Statistics indicates an increase in the absolute number of births after the steep decline of 2020 but that one-year change does not necessarily indicate a longer-term trend or increase in fertility rates. Given the long-term low level of fertility rates in the U.S. and continued delayed age of childbearing, the age patterns of fertility have been held constant throughout the 30-year projections interval.

Figure 2 presents the 2020 age-specific fertility rate patterns for Coos County, the smallest county in New Hampshire, and Hillsborough, the largest. There is a clear difference in the timing of fertility with Coos representing continued high levels of fertility in the younger ages peaking in the 25 to 29 age group. Hillsborough illustrates the delay in childbearing typical of more urban areas with peak fertility occurring in the 30 to 34 age group and very low levels for
the 20 to 24 and 25 to 29 -age groups. Note that both counties show low and nearly equal fertility levels for the 15 to 19 population. This has been typical of nationwide declines in fertility among young women.

Figure 2: 2020 Age-Specific Fertility Rates for Coos and Hillsborough Counties

As indicated above, the age pattern of fertility is held constant for the entire projection period, but the number of births generated by the pattern is dependent on the number of women of childbearing age in each age group and the Total Fertility Rate (TFR). The TFR is a summary measure of the number of births a woman will have if her childbearing experience follows the given pattern. A well-known number is the replacement level of fertility which is a TFR of 2.1 children per woman. This reflects the average number of children per woman necessary in a population to replace herself, a male partner and account for women unable to bear children. It is the combination of the age pattern of fertility and the Total Fertility Rate that controls the number of births generated in the Cohort-Component Projection model. Figure 3 illustrates the change in the TFR between 2010 and 2020 New Hampshire counties - each of which experience important declines.

The final TFR used in the projection model, and shown in Table 3, was a result of a calibration process described in the Components report and summarized below. This process showed that adjustment of the TFR's calculated in the Components analysis was necessary to reproduce the actual reported number of births by the Division for Vital Records Administration for the 2010 to 2015 and 2015 to 2020 periods. The TFR's applied for the 2020 to 2025 projection interval shown in Table 3 are all well below the 2.1 replacement level of fertility for all New Hampshire counties. Although the 2021 data indicate an increase in the number of births, there is no indication that fertility levels are beginning a long-term increase. While the future is uncertain, a continued decline in the overall fertility level seems unlikely.

Table 3: Projected Total Fertility Rates for New Hampshire Counties						
County	Projected Total Fertility Rate (TFR)					
	$2020-25$	$2025-30$	$\mathbf{2 0 3 0 - 3 5}$	$2035-40$	$\mathbf{2 0 4 0 - 4 5}$	$2045-50$
Belknap	1.680	1.680	1.680	1.680	1.680	1.680
Carroll	1.596	1.596	1.596	1.596	1.596	1.596
Cheshire	1.544	1.544	1.544	1.544	1.544	1.544
Coos	1.754	1.754	1.754	1.754	1.754	1.754
Grafton	1.746	1.746	1.746	1.746	1.746	1.746
Hillsborough	1.691	1.691	1.691	1.691	1.691	1.691
Merrimack	1.958	1.958	1.958	1.958	1.958	1.958
Rockingham	1.315	1.315	1.315	1.315	1.315	1.315
Strafford	1.701	1.701	1.701	1.701	1.701	1.701
Sullivan	1.733	1.733	1.733	1.733	1.733	1.733

Fertility Assumptions

- The age pattern of fertility defined based on 2019 to 2021 birth data will hold constant through the projection period for each county.
- The TFR resulting from the model calibration for the period 2010 to 2020 will hold constant throughout the projection period for each county.

Migration

Similar to the modeling of fertility, the projection model generates net migrants by age and sex for each county based upon an age pattern of migration and a specified total absolute level of migration, called the Crude Migration Rate.

The age pattern specifies the age distribution of net migrants and is gender specific. This can be thought of as the propensity to migrate, one age category relative to another, in any given area or time period. The absolute level of net migration is controlled by the specification of the Crude Migration Rate. As with the fertility module, the model has the flexibility to alter assumptions regarding changes in the age pattern of migration and the Crude Migration Rate in each time period.

In most cases, age migration follows a common "life cycle" transition. Migration of the youngest ages are tied to migration of their parents. Migration in the late teens and early 20's is impacted by college attendance and/or entry into the workforce. Migration through the 20's and early 30 's is volatile with exploration, job changes and household formation. The middle ages tend to show more stability in work/career and childrearing until early and traditional retirement ages become primary influences. In the older ages there is often a return from retirement destinations for family and health care services.

In the development of the age-specific migration patterns, rates were calculated for the 2010 to 2015 and 2015 to 2020 periods. There have been significant economic changes over the decade with the earlier half experiencing somewhat lower rates of migration as the nation recovered from the Great Recession. The latter half of the decade was a return to more "normal" patterns until 2020 and the COVID-19 pandemic just as the 2020 Census was being conducted. The impact on the Census count and resulting impact on the migration calculation is unknown. It is known that the enumeration timing was disrupted and that the Non-Response Follow Up operations were delayed until the summer of 2020. This could easily impact areas with high seasonal and second home populations. The timing and closure of many colleges and universities also impacted the count and this could have important impacts on the very narrow college age population.

Figures 4 and 5 illustrate the migration patterns for Coos and Hillsborough counties from the 2010 to 2020 residual migration analysis. Coos County shows variation in migration patterns for the 30 to 64 age groups between the first and second half of the decade while migration of
younger and older age groups is very consistent throughout the decade. Hillsborough County shows a high degree of similarity across all ages through the decade. The differences in Coos may be due to slow recovery from the economic recession in the beginning of the decade versus the improved economic climate of the latter half. In all counties, it is the average migration experience of the two 5 -year periods that is used in the projections model.

Figure 4: Coos County Residual Net Migration Rate 2010-2020

Figure 5: Hillsborough County Residual Net Migration Rate 2010-2020

As with the fertility assumption, the Crude Migration Rates, shown in Table 4, control the absolute level of migration in each projection period. The rates from the Components of Change analysis were used in the same calibration process as the fertility rates to ensure that migration would closely match the migration level implied by the 2020 Census population count.

County		Projected Crude Migration Rate					
		2020-25	2025-30	2030-35	2035-40	2040-45	2045-50
Belknap	Male	6.00	6.00	5.50	5.50	5.50	5.50
	Female	6.00	6.00	5.50	5.50	5.50	5.50
Carroll	Male	6.00	6.00	6.00	6.00	6.00	6.00
	Female	6.00	6.00	6.00	6.00	6.00	6.00
Cheshire	Male	2.50	2.50	2.50	2.50	2.50	2.50
	Female	2.50	2.50	2.50	2.50	2.50	2.50
Coos	Male	3.00	3.00	3.00	3.00	3.00	3.00
	Female	3.00	3.00	3.00	3.00	3.00	3.00
Grafton	Male	6.50	6.50	6.00	6.00	6.00	6.00
	Female	6.50	6.50	6.00	6.00	6.00	6.00
Hillsborough	Male	3.50	3.00	3.00	3.00	3.00	3.00
	Female	3.50	3.00	3.00	3.00	3.00	3.00
Merrimack	Male	4.50	4.50	4.50	4.50	4.50	4.50
	Female	4.50	4.50	4.50	4.50	4.50	4.50
Rockingham	Male	4.00	4.00	4.00	3.75	3.75	3.75
	Female	4.00	4.00	4.00	3.75	3.75	3.75
Strafford	Male	4.00	3.50	3.50	3.50	3.50	3.50
	Female	4.00	3.50	3.50	3.50	3.50	3.50
Sullivan	Male	1.50	1.50	1.50	1.50	1.50	1.50
	Female	1.50	1.50	1.50	1.50	1.50	1.50

Migration Assumptions

- The average age-sex pattern of migration defined based on the 2010 to 2020 Life Table Residual Migration method will hold constant through the projection period for each county.
- The Crude Migration Rate resulting from the model calibration for the period 2010 to 2020 will continue for the 2020 to 2025 period and then allow for variation based on historical trends and input from the New Hampshire regional project team.

Mortality

Mortality is the least volatile of the three components of change - fertility, migration and mortality. The population is aged by applying age and sex specific survivorship ratios for each 5year period to the base population by 5 -year age group. The model allows for area specific assumptions regarding the change in survivorship. However, there is generally little variation though there are differences by sex. The survivorship ratios are the result of the life table calculation of the probability of survival from one age group to the next. For example, the probability that a 30 - to 34 -year-old male will survive to become age 35 to 39 . A more wellknown result of life table calculations is the life expectancy at birth, which is shown below in Table 5.

Life tables are best constructed for larger population areas - typically over 100,000 population. There is always some probability of death at every age, but small population areas will often not experience any deaths in a particular age group at any given time. This means it is not possible to calculate an appropriate life table. Because of its population size, computation of the life table and survivorship ratios by sex are possible for Hillsborough County but no other New Hampshire counties. For this reason, regional life tables were prepared by creating county groups based on similar demographics characteristics and geography. Groupings included: Belknap and Merrimack; Rockingham and Strafford; Carroll, Coos and Grafton; Cheshire and Sullivan.

In addition to requiring a complete distribution of deaths, the life table analysis requires a more detailed distribution of deaths by age than the fertility or migration analysis. Infant mortality is relatively high in the first year of life requiring a breakdown of the under 5 age group into under 1 and 1 to 4 years. Data for 5 -year age groups are sufficient for the other ages but also need to account for deaths beyond the age of 85 and over. This requires detail for the 85 to 89,90 to 94 and 95 and over population. Current data for these more detailed age group data are not available from the New Hampshire Department of State. As a result, life tables were prepared using a 3-year average of deaths for 2009, 2010 and 2011 centered on the 2010 Census population. Figure 6 illustrates the survival distribution for both males and females in Hillsborough County. This clearly shows the similarity at the younger ages and how survival starts to diverge, and benefit females, after the age of 50 years.

Figure 5: Hillsborough County Survival Rate Distribution for Males and Females

Life expectancy has increased since 2010 and while use of the older data is not ideal, most of the increase is due to greater longevity of the senior population - age groups which have a declining impact on the overall projections. In order to capture some of that increased survival, the U.S. Social Security Administration's latest life table projections are used to update the initial rates and are used in the 2025 to 2030 projection period. Survival distributions for both males and females are held constant for the remaining projection interval. ${ }^{2}$

The difference in survival of males and females is best illustrated by the summary measure of the expectation of life at birth and is shown in Table 5. This is a summary of the entire mortality experience over a lifetime based on the age-specific survivorship ratios. Life expectancy for males in New Hampshire is 81.1 years compared to females at 84.6 years. Here again, it is important to note that these rates do not incorporate any impacts brought on by the COVID-19 pandemic. They are based on counts of deaths by age and sex for 2009, 2010 and 2011. More current data has not been made available from the Department of State.
Table 5: Life Expectancy at Birth for New Hampshire Counties

County	Total	Male	Female
Hillsborough	83.0	81.2	84.7
Belknap/Merrimack	82.0	80.4	83.6
Rockingham/Strafford	83.9	82.2	85.5
Carroll/Coos/Grafton	82.0	80.0	84.1
Cheshire/Sullivan	81.5	79.5	83.3

[^1]
Mortality Assumptions

- Life table survival rates are based on county level mortality data for Hillsborough County with the remaining counties based on regional aggregations of mortality data.
- The survival rate distributions based on the 2009 to 2011 mortality data are applied to the population by age and sex for the period 2020 to 2050.
- U.S. Social Security Administration projections of the change in survivorship are applied to the rate distribution for 2020 to 2025 to reflect increased survivorship for the 2025 to 2030 period. In ages where this would produce survival ratios greater than 0.9999 , the rates were constrained to allow a slight probability of death.
- The 2025 to 2030 rate distributions are held constant for the remaining projection periods.

Tables 6 through 16 present the 5 -year summary components of population change for the complete projection period for New Hampshire and each county.

	2020	2025	2030	2035	2040	2045	2050
Total Population	1,377,533	1,430,601	1,473,285	1,501,045	1,511,770	1,509,955	1,501,908
Population Change	X	53,068	42,684	27,760	10,725	-1,815	-8,047
Total 5-year Births	X	64,992	65,816	64,420	61,908	59,715	59,618
Total 5-year Deaths	X	63,550	74,093	88,518	103,249	114,013	120,074
Natural Increase	X	1,442	-8277	-24098	-41341	-54298	-60456
Net Migration (5-year)	X	51,626	50,961	51858	52066	52483	52,409
Female Population	694,955	720,851	742,461	757,122	763,553	763,699	760,499
Females Age 15 to 49	291,269	294,789	299,311	299,149	299,427	296,534	295,846

Table 7: Belknap County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	63,705	66,371	68,635	69,872	70,366	70,338	70,103
Population Change	x	2,666	2,264	1,237	494	-28	-235
Total 5-year Births	x	2,818	2,863	2,863	2,817	2,755	2,741
Total 5-year Deaths	x	3,744	4,345	5,172	5,936	6,421	6,615
Natural Increase	x	-926	-1482	-2309	-3119	-3666	-3874
Net Migration (5-year)	x	3,592	3,746	3546	3613	3638	3,639
Female Population	32,252	33,626	34,866	35,620	35,999	36,106	36,093
Females Age 15 to 49	11,931	12,175	12,397	12,283	12,473	12,495	12,524

Table 8: Carroll County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	50,111	52,293	54,023	54,939	54,935	54,273	53,293
Population Change	x	2,182	1,730	916	-4	-662	-980
Total 5-year Births	x	1,799	1,781	1,700	1,618	1,594	1,624
Total 5-year Deaths	x	2,519	3,087	3,923	4,817	5,453	5,763
Natural Increase	x	-720	-1306	-2223	-3199	-3859	-4139
Net Migration (5-year)	x	2,902	3,036	3139	3195	3197	3,159
Female Population	25,270	26,426	27,421	28,055	28,240	28,085	27,745
Females Age 15 to 49	8,067	7,942	8,074	7,980	8,094	7,982	7,896

Table 9: Cheshire County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	76,458	77,722	78,340	78,080	77,007	75,452	73,805
Population Change	X	1,264	618	-260	$-1,073$	$-1,555$	$-1,647$
Total 5-year Births	X	3,134	2,985	2,802	2,676	2,621	2,625
Total 5-year Deaths	X	3,528	4,065	4,769	5,453	5,852	5,914
Natural Increase	X	-394	-1080	-1967	-2777	-3231	-3289
Net Migration (5-year)	X	1,658	1,698	1707	1704	1676	1,642
Female Population	39,038	39,658	40,016	39,970	39,550	38,891	38,171
Females Age 15 to 49	16,167	16,100	16,151	15,911	15,493	15,047	14,786

Table 10: Coos County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	31,268	31,274	31,047	30,490	29,608	28,533	27,428
Population Change	x	6	-227	-557	-882	$-1,075$	$-1,105$
Total 5-year Births	x	1,220	1,174	1,110	1,050	1,012	996
Total 5-year Deaths	x	2,006	2,197	2,455	2,702	2,830	2,812
Natural Increase	x	-786	-1023	-1345	-1652	-1818	-1816
Net Migration (5-year)	x	792	796	788	770	743	711
Female Population	14,873	14,869	14,784	14,554	14,168	13,676	13,157
Females Age 15 to 49	5,233	5,054	4,897	4,753	4,631	4,461	4,303

Table 11: Grafton County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	91,118	94,984	98,030	99,463	99,711	98,998	97,777
Population Change	x	3,866	3,046	1,433	248	-713	$-1,221$
Total 5-year Births	x	3,830	3,750	3,676	3,606	3,469	3,363
Total 5-year Deaths	x	5,456	6,445	7,697	8,896	9,736	10,089
Natural Increase	x	$-1,626$	-2695	-4021	-5290	-6267	-6726
Net Migration (5-year)	X	5,492	5,741	5454	5538	5554	5,505
Female Population	46,183	48,162	49,792	50,662	50,965	50,791	50,312
Females Age 15 to 49	19,798	19,983	20,282	20,101	19,651	19,241	19,348

Table 12: Hillsborough County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	422,937	440,881	454,896	464,900	470,211	471,760	471,369
Population Change	x	17,944	14,015	10,004	5,311	1,549	-391
Total 5-year Births	x	23,227	23,672	23,150	22,218	21,466	21,505
Total 5-year Deaths	x	18,954	21,747	25,661	29,726	32,892	34,916
Natural Increase	x	4,273	1925	-2511	-7508	-11426	-13411
Net Migration (5-year)	x	13,671	12,090	12515	12819	12975	13,020
Female Population	212,368	220,927	227,825	232,888	235,771	236,862	236,984
Females Age 15 to 49	93,119	95,196	96,808	97,276	97,558	96,598	96,427

Table 13: Merrimack County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	153,808	159,385	164,072	167,214	168,609	168,770	168,475
Population Change	X	5,577	4,687	3,142	1,395	161	-295
Total 5-year Births	X	7,675	7,712	7,572	7,349	7,206	7,293
Total 5-year Deaths	x	8,359	9,540	11,162	12,821	13,979	14,529
Natural Increase	x	-684	-1828	-3590	-5472	-6773	-7236
Net Migration (5-year)	X	6,261	6,515	6732	6867	6934	6,941
Female Population	78,095	80,734	83,066	84,674	85,399	85,470	85,287
Females Age 15 to 49	32,419	32,719	33,184	33,170	33,311	33,284	33,363

Table 14: Rockingham County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	314,176	327,586	339,248	347,444	350,560	350,316	348,082
Population Change	X	13,410	11,662	8,196	3,116	-244	$-2,234$
Total 5-year Births	X	12,525	12,839	12,465	11,712	11,099	11,081
Total 5-year Deaths	X	11,152	13,753	17,317	21,103	23,969	25,929
Natural Increase	X	1,373	-914	-4852	-9391	-12870	-14848
Net Migration (5-year)	X	12,037	12,576	13048	12507	12626	12,614
Female Population	158,602	165,220	171,069	175,259	176,943	176,899	175,767
Females Age 15 to 49	63,898	64,216	65,479	65,585	65,770	65,025	64,383

Table 15: Strafford County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	130,889	136,162	140,565	144,214	146,813	148,384	149,435
Population Change	x	5,273	4,403	3,649	2,599	1,571	1,051
Total 5-year Births	x	6,811	7,160	7,293	7,158	6,852	6,773
Total 5-year Deaths	x	6,208	6,954	7,999	9,040	9,852	10,347
Natural Increase	x	603	206	-706	-1882	-3000	-3574
Net Migration (5-year)	x	4,670	4,197	4355	4481	4571	4,625
Female Population	66,578	69,132	71,304	73,132	74,455	75,267	75,833
Females Age 15 to 49	32,402	33,365	34,102	34,372	34,929	35,183	35,725

Table 16: Sullivan County Projected Components of Change

	2020	2025	2030	2035	2040	2045	2050
Total Population	43,063	43,943	44,429	44,429	43,950	43,131	42,141
Population Change	X	880	486	0	-479	-819	-990
Total 5-year Births	X	1,953	1,880	1,789	1,704	1,641	1,617
Total 5-year Deaths	X	1,624	1,960	2,363	2,755	3,029	3,160
Natural Increase	X	329	-80	-574	-1051	-1388	-1543
Net Migration (5-year)	X	551	566	574	572	569	553
Female Population	21,696	22,097	22,318	22,308	22,063	21,652	21,150
Females Age 15 to 49	8,235	8,039	7,937	7,718	7,517	7,218	7,091

Minor Civil Division Projections

New Hampshire's towns and cities, known in Census terms as Minor Civil Divisions (MCDs), are primary governmental units and make up 100 percent of all land area, and their boundaries are consistent with county boundaries. That means the total population projected for counties can be used as a "control" total for the sum of all of the MCDs in each county. This characteristic is important for the method used to project the future populations of towns, cities and related sub-county areas.

Much of the demographic data required by the county projections model is not available at the sub-county level. Total population, age, race, Hispanic or Latino origin and housing unit data will become available from the Decennial Census but is not currently available. Many of these MCD's are too small in population size to allow for individual projection and certainly not for age and sex characteristics. The Census Bureau also prepares annual estimates of the total population for all MCD's, but here also there are no demographic characteristics available.

The Office of Planning and Development requires projections of only the total population for each MCD. The projections to 2050 are based on a "shift-share" methodology which is a common method used in local and regional projections and analysis. In this application, the method computes the share of population that each MCD comprises of the county total population and applies that ratio to projected county growth. Table 17 presents an example of the share development for Belknap County. Here it is seen that the share of county population in the city of Laconia, for example, declined between 2000 and 2010 from 29.14 percent to 26.55 percent and then remained very stable in 2020 at 26.48 percent. These share trends form the basis for the projection of each MCD through 2050.

Table 17: Shift-Share Method Results for Belknap County

	2000		2010		2020	
	Population	Share	Population	Share	Population	Share
Belknap County	56,325	100.00%	60,088	100.00%	63,705	100.00%
Alton town	4,502	7.99%	5,250	8.74%	5,894	9.25%
Barnstead town	3,886	6.90%	4,593	7.64%	4,915	7.72%
Belmont town	6,716	11.92%	7,356	12.24%	7,314	11.48%
Center Harbor town	996	1.77%	1,096	1.82%	1,040	1.63%
Gilford town	6,803	12.08%	7,126	11.86%	7,699	12.09%
Gilmanton town	3,060	5.43%	3,777	6.29%	3,945	6.19%
Laconia city	16,411	29.14%	15,951	26.55%	16,871	26.48%
Meredith town	5,943	10.55%	6,241	10.39%	6,662	10.46%
New Hampton town	1,950	3.46%	2,165	3.60%	2,377	3.73%
Sanbornton town	2,581	4.58%	2,966	4.94%	3,026	4.75%
Tilton town	3,477	6.17%	3,567	5.94%	3,962	6.22%

The shift aspect of the method allows for the shares to be adjusted based on other exogenous factors like housing construction, transportation networks and changes in employment centers. It is common practice to make this type of adjustment when factors affecting growth are known, as in the case of new housing development that is approved and/or under construction, new transportation infrastructure or new commercial development that has the potential to change employment patterns. It is not reasonable, or good practice, to alter projections on the basis of speculative change unless that is a potential scenario that the analyst simply wants to investigate. That is not the case in the development of this set of projections.

For this project, the team consulted with the state's nine regional planning commission (RPC) directors and identified areas of significant upcoming housing development, including approved permits for construction and development that was actually under construction, for areas in Carroll, Cheshire, Hillsborough, Merrimack, Rockingham and Strafford counties. For these counties, the shares were adjusted to account for future growth in the 2020 to 2025 period and then held constant at the adjusted level for the remainder of the projection intervals. For other counties where such data was not available, the 2020 population shares were held constant throughout the projection interval.

The New Hampshire county population projections for 2020 to 2050 by municipality are located in Appendix B.

New Hampshire's RPCs are not always made up of entire counties and have boundaries that follow MCD boundaries. In order to provide the RPCs with total population projections, the MCD projections have been aggregated to regional boundaries as shown in Table 18.

Table 18: Population Projections by Regional Planning Commission (RPC)

New Hampshire RPCs	2020 Census	2025	2030	2035	2040	2045	2050
Central New Hampshire Regional Planning Commission	120,515	124,920	128,598	131,074	132,189	132,335	132,112
Lakes Region Planning Commission	125,258	130,448	134,739	137,093	137,797	137,310	136,302
Nashua Regional Planning Commission	217,543	226,575	233,630	238,666	241,339	242,119	241,922
North Country Council	83,107	85,340	86,866	87,171	86,379	84,799	82,887
Rockingham Planning Commission	198,870	207,357	214,738	219,925	221,897	221,743	220,329
Southern New Hampshire Planning Commission	285,230	297,529	307,538	314,622	317,976	318,575	317,693
Southwest Region Planning Commission	100,307	102,551	103,931	104,209	103,415	101,931	100,248
Strafford Regional Planning Commission	156,145	162,479	167,784	172,031	174,816	176,294	177,095
Upper Valley Lake Sunapee Regional Planning Commission	90,554	93,408	95,467	96,258	95,967	94,854	93,326

Race and Hispanic Origin Projections

The Census Bureau collects race and ethnicity data in accordance with the 1997 Standards for Maintaining, Collecting, and Presenting Federal Data on Race and Ethnicity directed by the U.S. Office of Management and Budget ${ }^{3}$. This requirement has maintained consistency in the collection of data for the 2000, 2010 and 2020 censuses, as well as Census Bureau current surveys such as the ACS. These definitions have been followed in the development of projections for New Hampshire's counties by race and Hispanic Origin.

The Census derives these data from the responses to two separate questions:

1) Is this person of Hispanic, Latino, or Spanish Origin? This includes a "Yes"/"No" response and if "Yes" selections for the type of origin and a write-in space.
2) What is this person's race? This allows for multiple selections of racial identification and also write-in space for further identification.

This construct allows for multiple cross classifications of race and Hispanic Origin and data reported from each census includes many tables and permutations of the various selections.

A common tabulation of these questions results in a smaller set of mutually exclusive categories which present racial identification for the Hispanic and Non-Hispanic population. This form of tabulation is used for the projections and includes the following categories:

[^2]1) White alone, Non-Hispanic
2) Black or African American alone, Non-Hispanic
3) American Indian or Alaska Native alone, Non-Hispanic
4) Asian alone, Non-Hispanic
5) Some other race alone, Non-Hispanic
6) Two or more races, Non-Hispanic
7) Hispanic

Attitudes toward race and ethnic identification have changed over time with a general willingness to be more specific when reporting an individual's race and ethnic identity. For the 2020 Census, there were also changes in the way the Census Bureau tabulated the responses which affect the data for those reporting "Some other race" and "Two or more races". These changes are described in an August 2021 Census Bureau blog found at: https://www.census.gov/newsroom/blogs/random-samplings/2021/08/improvements-to-2020-census-race-hispanic-origin-question-designs.html

The Census Bureau last produced national projections of the population by race and Hispanic Origin in 2017. Those projections provided population counts in 5-year projection intervals to the year 2060. An initial attempt to develop New Hampshire projections was made by using the percent change by racial/Hispanic Origin category in each period. However, the Census Bureau projections used a modified racial classification that eliminated the "Some other race" category and distributed that population to the various racial groups. This difference made it impossible to use the Census projections for the race/ethnic categories required.

The alternative method, which has been used here, is to apply the percent distribution, starting with the 2020 Census distribution, to the projected New Hampshire county level total populations. This method maintains the mutually exclusive categories and allows the state's total projection to be consistent with the individual county projections. Table 19 presents the New Hampshire race and Hispanic Origin projections which is the sum of the individual counties.

Table 19: New Hampshire Population Projections by Race and Hispanic Origin

	April 1, 2020		Sum of Counties					
	Number	Percent	2025	2030	2035	2040	2045	2050
Total	1,377,529	100.0\%	1,430,601	1,473,285	1,501,045	1,511,770	1,509,955	1,501,908
Not Hispanic								
White Alone	1,200,649	87.2\%	1,212,812	1,227,467	1,233,906	1,229,092	1,219,133	1,206,087
Black or African American Alone	18,655	1.4\%	21,512	24,359	26,549	28,385	29,150	29,722
American Indian and Alaska Native Alone	2,299	0.2\%	2,422	2,465	2,508	2,523	2,518	2,503
Asian Alone	35,604	2.6\%	39,970	43,773	46,940	48,798	50,034	50,752
Native Hawaiian and Other Pacific Islander Alone	388	0.0\%	2,626	2,708	2,765	2,791	2,794	2,785
Some Other Race	5,916	0.4\%	8,934	11,460	12,676	14,723	15,079	16,366
Two or More Races	54,564	4.0\%	72,138	83,067	91,528	97,286	100,555	101,899
Hispanic	59,454	4.3\%	70,187	77,986	84,173	88,171	90,693	91,795

Sources of Data

- New Hampshire Department of State, Division of Vital Records Administration, NHVRINweb query service
- U.S. Census Bureau
- 2000 Census of Population, Summary File 1, Population by Sex and Age
- 2010 Census of Population, Summary File 1, Population by Sex and Age
- 2020 Census of Population, Public Law 94-171 Redistricting data file
- Intercensal Estimates of the Resident Population by 5-year Age Groups, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2019
- 2020 Census Bureau, Demographic Analysis estimates by county, age and sex
- 2019 American Community Survey, Table B01001
- U.S. Department of Health and Human Services, Centers for Disease Control, National Center for Health Statistics
- U.S. Social Security Administration, "Life Tables for the United States Social Security Area, 1900-2100", Actuarial Study No. 120.
- U.S. Census Bureau, 2017 National Population Projections Tables: Main Series, https://www.census.gov/data/tables/2017/demo/popproj/2017-summary-tables.html
- Vespa, Jonathan, Lauren Medina, and David M. Armstrong, "Demographic Turning Points for the United States: Population Projections for 2020 to 2060," Current Population Reports, P25-1144, U.S. Census Bureau, Washington, DC, 2020.

Glossary

Age-Specific Fertility Rate - The Age-Specific Fertility Rate is calculated as the number of births by age of mother divided by the number of women of the same age. For example, births to women age 25 to 29 divided by the number of women age 25 to 29 . It is a more accurate representation of fertility than crude measures based on the total population or the population of all women. The Age-Specific Fertility Rate can be thought of as the "probability" of women of a certain age giving birth.

Age-Specific Migration Rate - The Age-Specific Migration Rate is calculated as the number of net migrants during the migration period for a specific age category divided by the number of persons in that age category at the beginning of the migration period. For example, between 2010 and 2015, the number of net migrants age 30 to 34 is divided by the number of 30 to 34 year-old persons in 2010.

Crude Migration Rate - The Crude Migration Rate is the total number of net migrations (the balance between in-migrants and out-migrants) divided by the total population at the beginning of the migration period. For example, when measuring migration between 2010 and 2015, the Crude Migration Rate is the number of net migrants during the period divided by the total population in 2010.

Grade Progression Ratio - The ratio of students in a current grade and school year to the students in the previous grade one year earlier. For example, 500 students enrolled in grade 3 in the Fall of 2019 divided by 450 students enrolled in grade 2 in the Fall of 2018 equals a grade progression ratio of 1.111.

Sex Ratio - The sex ratio is typically calculated as the ratio of males to females. Typically the sex ratio at birth is greater than 1.0 slightly favoring more male births than female births. By age 65 , the sex ratio greatly favors women due to their greater longevity.

Total Fertility Rate - The Total Fertility Rate is the sum of age-specific fertility rates and represents the average completed fertility of women across all ages. A Total Fertility Rate of 2.1 represents the "replacement" level of fertility - that level which accounts for a woman replacing herself, her partner and accounting for childless women.

Survivorship Ratio - The survivorship ratio at any given age represents the probability that an individual age " x " will survive to age " $x+n$ " where " n " is the number of years in the interval. For example, the probability that an individual at age 30 on the exact day of their birthday will survive five years to be age 35 on the exact day of their birthday.

Appendix A

New Hampshire County Population Projections 2020 to 2050: Demographic Components of Change Report

Introduction

This report presents analysis of the demographic components of change for the ten counties of New Hampshire. The historical components of change analysis is the first step in development of transition rates for the Cohort Component Projection model. Figure 1 illustrates the link between analysis of the historical population change and the inputs to the model projecting future populations. The projection model requires age-sex specific rates of mortality and migration, and fertility rates by age of mother and their county of residence. These are developed from the historical analysis presented in this report and are necessary for understanding the demographic factors accounting for change in the population. Further analysis helps to understand population change by age and sex cohort.

Figure 1: Projection Process Phases

Each component is applied separately in the projections model while also being sensitive to the interactive effects of the components. For example, the projected number of births in a future period is a function of the fertility rates applied to women of childbearing age but is also a
function of the interaction with migration. If the number of women is increasing due to inmigration, births will increase even when fertility rates are stable.

The Components of Change Module and analysis utilizes the following data sources:

- Historical birth and death data by age and sex from the New Hampshire Department of State through the Division of Vital Records Administration web query system,
- Current and historical census results and population estimates from the U.S. Census Bureau Decennial Census, Population Estimates Program and American Community Survey,
- College enrollment by age and sex for selected colleges from the U.S. Department of Education, Integrated Postsecondary Education Data System (IPEDS),
- Prison populations by age and sex (when available) through various county corrections departments,
- Nursing home residents by facility provided by the New Hampshire Office of Planning and Development,
- Estimates of total net migration and migration by age and sex prepared by RLS Demographics using Census Bureau estimates and the Life Table Survival Rate methodology.

Demographic Components of Change - Process Overview

Demographic components of change (fertility, mortality and migration) are analyzed to capture total population change and change by age and sex. This is particularly important for projecting births which are dependent on fertility rates and the number of women of childbearing age. Changes in household composition and housing unit type are also factors to be considered when analyzing population change. Household composition relates to our living arrangements: single person households, delayed marriage, reduced household sizes. Housing construction relates to the type of unit: single family versus multi-unit structures. This has particular impacts on household size and the number of children.

The age structure of the population is particularly important in measuring changes in the fertility level. The simple Crude Birth Rate (total births divided by the total population) does not capture the "population at risk" of having children, namely, women of childbearing age. Fertility rates are not consistent across all ages, requiring the calculation of age-specific fertility. Migration is a critically important component and must also be specific to age and sex populations. Each of these component factors is discussed in more detail below.

The measurement of population change over a given period of time is defined by a simple identity known as the demographic balancing equation. In its simplest form, the equation is stated as:
$P_{1}=P_{0}+B_{(t, t+n)}-D_{(t, t+n)}+M_{(t, t+n)}$

Where: $\mathrm{P}_{0}=$ population at the base period
$P_{1}=$ population at the end of period n
$B=$ births between time t and $t+n$
$D=$ deaths between time t and $t+n$
$M=$ net migrants between time t and $t+n$

The Population Estimates Program of the U.S. Census Bureau utilizes a nationwide methodology for estimating total population and age, race, sex characteristics at the county level which follows this basic balancing equation concept. Table 1 presents these historical estimates and components of change for the State of New Hampshire and for each county.

Population change in New Hampshire and individual counties has varied over the last three decades. Total growth in New Hampshire from 1990 to 2020 exceeded 260,000 and a rate of 24.6 percent. Not all counties grew during that time period, and the range of population change shows a loss of more than 3,500 (-10.2 percent) in Coos to a high of 87,000 in Hillsborough. While Hillsborough had the largest numeric increase, the rate of change was 25.9 percent. The rate of growth in five other counties (Belknap, Grafton, Merrimack, Rockingham and Strafford) were all in the range of 20 to 30 percent. Carroll County had the fastest rate of increase at 41.5 percent.

These overall populations and rates of change mask the variation occurring within the threedecade span. Growth or decline is not consistent. Coos County shows a fairly consistent decline in each 5-year period but even here there was some growth between 2005 and 2010. Carroll County with the most rapid rate of growth is estimated to have lost population between 2010 and 2015. Each county exhibits different patterns of change in reviewing the 5 -year periods.

Population change is a function of only three demographic processes: fertility, mortality and migration. As noted earlier, this report analyzes the effects of each of these components. Two factors stand out as being consistent across all counties: a decline in the number of births and an increase in the number of deaths. This difference is referred to as "natural change". Declining births reflect national trends of reduced fertility levels, and increasing deaths reflects, again following national trends, the aging of the Baby Boom cohort into high mortality ages. These trends are so pronounced that Belknap, Carroll, Coos, Grafton and Merrimack counties all show natural decline - an excess of deaths over births - in the 2015 to 2020 period. Cheshire, Strafford and Sullivan counties are very near that level.

Table 1: New Hampshire Historical Components of Change, 1990 to 2020

New Hampshire State	April 1, 1990	July 1, 1995	$\begin{gathered} \text { April 1, } \\ 2000 \end{gathered}$	July 1, 2005	$\begin{gathered} \text { April 1, } \\ 2010 \end{gathered}$	July 1, 2015	$\begin{gathered} \text { April 1, } \\ 2020 \end{gathered}$
Total Population	1,109,252	1,157,561	1,235,786	1,298,492	1,316,470	1,336,350	1,377,529
Population Change	X	48,309	78,225	62,706	17,978	19,880	41,179
Percent Change	X	4.4\%	6.8\%	5.1\%	1.4\%	1.5\%	3.1\%
Cumulative Births	X	78,913	71,940	72,571	69,253	62,555	72,337
Cumulative Deaths	x	43,463	47,310	49,433	50,929	55,059	49,804
Natural Increase	x	35,450	24,630	23,138	18,325	7,496	22,534
Net Migration	X	12,859	53,595	39,568	-347	12,384	-4,716
Crude Net Migration Rate	x	1.2\%	4.6\%	3.2\%	0.0\%	0.9\%	-0.4\%
Belknap County							
Total Population	49,216	50,780	56,268	60,928	60,075	60,408	63,705
Population Change	X	1,564	5,488	4,660	-853	333	3,297
Percent Change	x	3.2\%	10.8\%	8.3\%	-1.4\%	0.6\%	5.4\%
Cumulative Births	X	x	2,671	3,040	3,403	2,841	2,338
Cumulative Deaths	x	x	2,287	2,722	2,635	3,015	3,064
Natural Increase	x	x	384	319	768	-174	-726
Net Migration	X	X	5,104	4,341	-1,621	507	4,023
Crude Net Migration Rate	x	X	10.1\%	7.7\%	-2.7\%	0.8\%	6.7\%
Carroll County							
Total Population	35,410	37,543	43,697	46,707	47,823	47,442	50,107
Population Change	x	2,133	6,154	3,010	1,116	-381	2,665
Percent Change	x	6.0\%	16.4\%	6.9\%	2.4\%	-0.8\%	5.5\%
Cumulative Births	X	X	1,891	2,093	2,249	1,903	1,541
Cumulative Deaths	x	X	1,666	1,860	1,848	2,011	2,039
Natural Increase	X	x	226	233	402	-109	-498
Net Migration	X	x	5,929	2,777	715	-273	3,163
Crude Net Migration Rate	X	x	15.8\%	6.4\%	1.5\%	-0.6\%	6.7\%

Table 1: New Hampshire Historical Components of Change, 1990 to 2020 (cont'd)

Cheshire County	April 1, 1990	July 1, 1995	April 1, 2000	July 1, 2005	April 1, 2010	July 1, 2015	July 1, 2019	April 1, 2020
Total Population	70,121	70,850	73,811	76,832	77,123	76,390	75,880	76,458
Population Change	x	729	2,961	3,021	291	-733	-510	68
Percent Change	X	1.0\%	4.2\%	4.1\%	0.4\%	-1.0\%	-0.7\%	0.1\%
Cumulative Births	X	x	3,504	3,939	4,276	3,597	2,610	3,085
Cumulative Deaths	x	x	2,481	2,855	2,559	2,993	2,526	3,005
Natural Increase	x	x	1,023	1,083	1,717	604	84	80
Net Migration	x	x	1,938	1,938	-1,426	-1,337	-594	-12
Crude Net Migration Rate	x	x	2.7\%	2.6\%	-1.9\%	-1.7\%	-0.8\%	0.0\%

Coos County

Total Population	34,828	33,578	33,089	32,779	33,052	32,351	31,421	31,268
Population Change	x	$-1,250$	-489	-310	273	-701	-930	$-1,083$
Percent Change	x	-3.6%	-1.5%	-0.9%	0.8%	-2.1%	-2.9%	-3.4%
Cumulative Births	x	x	1,501	1,567	1,669	1,377	947	1,123
Cumulative Deaths	x	x	1,704	1,883	1,558	1,845	1,558	1,844
Natural Increase	x	x	-204	-316	111	-468	-611	-721
Net Migration	x	x	-286	6	163	-233	-319	-362
Crude Net Migration Rate	x	x	-0.9%	0.0%	0.5%	-0.7%	-1.0%	-1.1%

Grafton County

Total Population	74,929	77,545	81,764	84,743	89,135	89,566	90,369	91,118
Population Change	x	2,616	4,219	2,979	4,392	431	803	1,552
Percent Change	x	3.5%	5.4%	3.6%	5.2%	0.5%	0.9%	1.7%
Cumulative Births	x	x	3,864	4,227	4,697	3,992	2,803	3,303
Cumulative Deaths	x	x	3,747	4,213	3,979	4,801	4,008	4,813
Natural Increase	x	x	117	15	718	-810	$-1,205$	$-1,511$
Net Migration	x	x	4,103	2,965	3,674	1,241	2,008	3,063
Crude Net Migration Rate	x	x	5.3%	3.6%	4.3%	1.4%	2.2%	3.4%

Hillsborough County

Total Population	335,838	349,027	380,856	398,784	400,706	409,229	417,738	422,937
Population Change	x	13,189	31,829	17,928	1,922	8,523	8,509	13,708
Percent Change	x	3.9%	9.1%	4.7%	0.5%	2.1%	2.1%	3.3%
Cumulative Births	x	x	23,430	26,150	27,816	22,665	16,706	19,791
Cumulative Deaths	x	x	12,692	14,245	13,292	15,605	13,381	16,003
Natural Increase	x	x	10,738	11,906	14,524	7,060	3,325	3,788
Net Migration	x	x	21,091	6,023	$-12,602$	1,463	5,184	9,920
Crude Net Migration Rate	x	x	6.0%	1.6%	-3.2%	0.4%	1.3%	2.4%

Table 1: New Hampshire Historical Components of Change, 1990 to 2020 (cont'd)

Merrimack County	April 1, 1990	July 1, 1995	April 1, 2000	$\begin{gathered} \hline \text { July 1, } \\ 2005 \end{gathered}$	April 1, 2010	July 1, 2015	July 1, 2019	April 1, 2020
Total Population	120,240	123,596	136,264	146,353	146,452	148,770	151,606	153,808
Population Change	x	3,356	12,668	10,089	99	2,318	2,836	5,038
Percent Change	x	2.8\%	10.2\%	7.4\%	0.1\%	1.6\%	1.9\%	3.3\%
Cumulative Births	x	x	7,039	8,063	8,695	7,111	5,219	6,144
Cumulative Deaths	x	x	5,341	6,608	6,028	6,966	5,964	7,106
Natural Increase	x	x	1,698	1,455	2,667	145	-745	-962
Net Migration	x	x	10,970	8,634	-2,568	2,173	3,581	6,000
Crude Net Migration Rate	x	x	8.9\%	6.3\%	-1.8\%	1.5\%	2.4\%	4.0\%
Rockingham County								
Total Population	245,845	257,715	277,388	292,634	295,207	302,975	309,647	314,176
Population Change	x	11,870	19,673	15,246	2,573	7,768	6,672	11,201
Percent Change	x	4.8\%	7.6\%	5.5\%	0.9\%	2.6\%	2.2\%	3.6\%
Cumulative Births	X	x	16,090	17,344	16,959	13,610	10,618	12,603
Cumulative Deaths	x	x	6,269	7,407	6,795	8,549	7,531	9,063
Natural Increase	x	x	9,821	9,938	10,164	5,061	3,088	3,540
Net Migration	x	x	9,852	5,309	-7,591	2,707	3,585	7,661
Crude Net Migration Rate	x	X	3.8\%	1.9\%	-2.6\%	0.9\%	1.2\%	2.5\%
Strafford County								
Total Population	104,233	105,907	112,235	119,006	123,146	127,174	130,716	130,889
Population Change	x	1,674	6,328	6,771	4,140	4,028	3,542	3,715
Percent Change	x	1.6\%	6.0\%	6.0\%	3.5\%	3.3\%	2.8\%	2.8\%
Cumulative Births	x	x	6,134	7,288	7,881	6,539	4,715	5,578
Cumulative Deaths	x	x	3,437	4,069	4,043	4,943	4,571	5,456
Natural Increase	x	x	2,697	3,219	3,838	1,597	144	122
Net Migration	x	x	3,631	3,552	302	2,432	3,399	3,593
Crude Net Migration Rate	x	x	3.4\%	3.2\%	0.3\%	2.0\%	2.7\%	2.8\%
Sullivan County								
Total Population	38,592	39,138	40,435	42,284	43,738	43,175	43,263	43,063
Population Change	x	546	1,297	1,849	1,454	-563	88	-112
Percent Change	x	1.4\%	3.3\%	4.6\%	3.4\%	-1.3\%	0.2\%	-0.3\%
Cumulative Births	x	x	2,084	2,461	2,623	2,108	1,549	1,814
Cumulative Deaths	x	x	1,212	1,288	1,226	1,450	1,272	1,515
Natural Increase	X	x	871	1,173	1,397	658	278	299
Net Migration	x	X	426	676	57	-1,221	-190	-411
Crude Net Migration Rate	x	x	1.1\%	1.7\%	0.1\%	-2.8\%	-0.4\%	-1.0\%

Source: U.S. Census Bureau, Intercensal Estimates of Population, 2000 to 2019. New Hampshire Department of State, Annual Vital Statistics, 1990 to 2020

Migration is the most volatile of the three demographic components of change and is responsive to many economic, housing and social changes. New Hampshire counties reflect this with varying levels of both in- and out-migration over the three decades and differences between the counties. Grafton and Strafford counties are the only counties that show net inmigration in each 5 -year period. Some of the largest levels of net out-migration (Belknap,

Cheshire, Hillsborough, Merrimack and Rockingham) occur in the 2005 to 2010 period and are likely a result of the Great Recession.

An important caveat: To date, results from the 2020 Census only include data required under Public Law 94-171 for states to use in Congressional and state redistricting. This data file provides results for all levels of geography from the state total to all individual census blocks. However, the characteristics provided are limited to include population by race, Hispanic/Latino origin, voting age (18 and over), housing occupancy and group quarters population.

Analysis of Age-Sex Specific Components of Change

While these trends in total population are informative, it's necessary to understand the underlying age-sex distribution of the population and its impact on the components of change. In the context of producing 30-year population projections, fertility and migration become the most important components.

Fertility Analysis

The absolute number of births projected by the Cohort-Component Projections model for each area, in each 5-year time interval, is calculated by applying age-specific fertility rates to the number of women in the childbearing ages (women age 15 through 49). The number of male and female births is determined by applying the sex ratio at birth based on historical data.

Individual county fertility patterns are based on two decades of analysis using the Decennial Census as the benchmark for each decade. Births by age of mother are averaged over a threeyear period centered on the Census data. The analysis for 2010 uses birth data for 2009, 2010 and 2011 and the 2010 Census population as the base. As noted earlier, 2020 Census data at this level is not available, while State vital statistics data on births by age of mother is available through calendar year 2021. The analysis is based on the three-year average of 2019, 2020 and 2021 births. The base population utilizes estimates for 2020 from the Census Bureau's Demographic Analysis program for evaluation of the 2020 Census results. This process is fully described.

Estimating the 2020 Age-Sex Distribution

An important factor that can affect the results is having to estimate the 2020 age-sex distribution. In the absence of the actual 2020 Census results, the age-sex distribution has been estimated using the Census Bureau's county level Demographic Analysis estimates for April 1, 2020. These estimates use a methodology similar to the demographic balancing equation whereby the 2010 population is "aged" to 2020 incorporating birth, death and estimated migration data. The age-sex structure will closely reflect the structure of the 2010 Census but doesn't account for changes other than the natural aging process.

The estimates are subject to what is called "error of closure" which is the measurable error between the estimated population and the actual Census result. The estimates can over or understate the Census enumerated population and that difference represents error in the estimates process. Lacking the age-sex data from the 2020 Census, the Demographic Analysis estimates have been made to equal the 2020 Census total population count for each county. This is accomplished by uniformly applying the percent difference between the estimate total and the 2020 Census total to each age-sex group.

A second issue of importance is special populations. Special populations reside in group quarters and include populations like college students, prisoners, military, and nursing home residents. These populations impact the calculations for age-specific fertility and migration rates because they do not reflect actions of the general population. In the case of fertility, college age women are not prone to having children at the same rates as their counterparts who are not in college. In the case of migration, college students do not "age in place" as the general population. Graduating seniors often do not stay in the location of the college and are replaced each year by incoming freshmen. If these populations are not removed from the total resident population by age and sex, they will distort the resulting fertility and migration rates and create an artificial "bulge" in the age distribution as they age.

New Hampshire is home to a number of colleges and universities with large enrollments. They are primarily located in Cheshire, Grafton, Hillsborough, Merrimack and Strafford counties. The data used here is based on full-time undergraduate and graduate enrollment by age and sex from the National Center for Education Statistics. Prison populations are defined in Cheshire, Coos, Hillsborough, Merrimack, Rockingham and Strafford counties though the populations are relatively small in all but Coos, Hillsborough and Merrimack. Current data by age and sex for 2020 was not available for all facilities and was estimated based on the total inmate counts. Nursing home populations reside in each county. Only the total resident population is available and the age-sex detail was estimated based on the age-sex distribution in the Census Bureau American Community Survey estimates of nursing home residents for the 2015-2019 period.

The age-specific fertility patterns establish women's relative propensity for giving birth at each age. The patterns are often remarkably stable and it's the pattern by age that illustrates how recent generations have delayed childbearing. This is seen in the following Figures 2 through 11 where fertility of teenage women 15 to 19 and women age 20 to 30 have continued to decline while fertility of women age 30 to 34 and older has increased. This shift reflects nationwide trends. Two factors affecting the future projection are unknown: the results of the 2020 Census and the impact of the COVID pandemic on long-term fertility.

Figure 2: Belknap County Age-Specific Fertility Rates

Figure 4: Cheshire County Age-Specific Fertility Rates

Figure 6: Grafton County Age-Specific Fertility Rates

Figure 8: Merrimack County Age-Specific Fertility Rates

Figure 3: Carroll County Age-Specific Fertility Rates

Figure 5: Coos County Age-Specific Fertility Rates

Figure 7: Hillsborough County Age-Specific Fertility Rates

Figure 9: Rockingham County Age-Specific Fertility Rates

Figure 10: Strafford County Age-Specific Fertility Rates

Figure 11: Sullivan County Age-Specific Fertility Rates

The last piece of the fertility analysis is the actual level of fertility as described by the Total Fertility Rate (TFR). A well-known number is the replacement level of fertility, which is a TFR of 2.1 children per woman. This reflects the average number of children per woman necessary in a population to replace herself, a male partner and account for women unable to bear children. It is the combination of the age pattern of fertility and the Total Fertility Rate that controls the number of births generated in the Cohort-Component Projection model.

The delay of marriage and childbearing is a recognized trend of the last two decades, and there is little to indicate that women will again begin to have children at younger ages, particularly for the very young teen population. Assuming the age pattern of fertility remains constant, the TFR can be used in the model to affect the absolute number of births generated by women of childbearing years. The absolute number of births will be a function of the number of women (impacted by the age distribution and migration) and the TFR. If the TFR and age-specific rates remain constant, an increase in the number of women due to migration will increase the number of births and vice versa. If the age distribution (number of women by age) remains constant, then increasing the TFR will increase the number of births and vice versa. Both of these parameters are used in the projection model to vary assumptions about future events.

Figure 12: Total Fertility Rates in 2010 and 2020 for New Hampshire Counties

Even in 2010, the Total Fertility Rate for each of New Hampshire's counties, as well as the nation, was below the replacement level of fertility. It has continued to decline and the 2020 rates are reaching historically low levels.

As noted earlier, the lack of final 2020 Census data on the age-sex distribution of population and the recent impact of the COVID-19 pandemic are limitations that present challenges for projecting future changes in fertility. However, given the nationwide declines in fertility and continued delay of childbearing, there seems to be little justification for making large changes in the fertility patterns or the TFR in the projections model. This will allow future births to primarily be a function of the natural cohort aging of women of childbearing age and migration. This analysis of the current fertility rates establishes the starting point for the projection of future fertility.

Migration Analysis

Similar to the modeling of fertility, net migrants by age and sex for each county are based on the age pattern of migration and a specified total absolute level of migration, the Crude Migration Rate (CMR). The age pattern typically reflects life-cycle changes. Oftentimes, lifecycle factors are most important in the decision to migrate or not. Because of this, age patterns of migration can show stability over time, even though economic conditions result in a higher or lower overall level of total migration. At the county level, some counties exhibit absolute stability of the age pattern while others show very mixed patterns. In cases of stability, the age patterns define the level of migration in each age group relative to other ages and the whole pattern shifts up or down depending on the total net migration or CMR.

The age pattern specifies the age distribution of net migrants and is sex specific. As with fertility, this can be thought of as the propensity to migrate, one age category relative to another, in any given area or time period. The absolute level of net migration is controlled by the specification of the CMR. The CMR used in the projection model is analogous to the 5 -year Crude Net Migration Rate shown in Table 1 above. As with the fertility module, the model has the flexibility to alter assumptions regarding changes in the age pattern of migration and the Crude Migration Rate in each time period.

These age-specific patterns are calculated using the Life Table Residual Migration method. It uses the decennial census populations for 2010 and the estimated age-sex distribution for 2020 as the actual populations. This process measures the difference between the "expected" population after accounting for cohort aging and the "observed" population actually enumerated in the census.

For example, the 2010 Census population by age and gender is "aged" to be 10 years older at the time of the 2020 Census. This aging is accomplished by applying survival rates from the life table mortality analysis to each age-sex cohort and estimates the expected number of people alive at the end of the decade who are 10 years older. Applying the life table survival ratio to the population age 35-39 in 2010 yields the number of expected 45-49 year olds as of the 2020

Census. The difference between the expected number and the actual enumerated population is, by definition, migration. If the observed population is higher than the expected population, then in-migration must have occurred and vice versa.

This calculation is carried out for the decade in two 5-year intervals: aging the 2010 population to 2015 and comparing it to the Census Bureau's current estimates and aging the 2015 population to 2020 and comparing it to the 2020 estimated Census count. Annual births are also included to measure migration of the youngest age groups. Actual reported births between 2010 and 2015 become the 0 to 4 population in 2015 and births between 2015 and 2020 become the 0 to 4 population in 2020. This calculation is shown in Table 2 for the total population in Belknap County for the 2010 to 2020 period.

There is a lot of data in Table 2 so the resulting migration pattern for males and females in New Hampshire is more easily seen in Figures 13 and 14. It's important to remember the economic picture for the decade. Migration slowed dramatically during the Great Recession of 2007 to 2009. However, recovery was slow and had different effects in different areas of the country. The second half of the decade was a period of more normal economic growth, though many areas still experienced high unemployment and mobility. The effects of the COVID-19 pandemic on migration weren't yet felt during this time period but likely have a great impact on the migration of population for 2020 and 2021. The continued effects are unknown.

Figures 13 and 14 illustrate some important points. First, there is some volatility between the first and second half of the decade affecting some ages, especially for males in the 30 to 60 age range. This likely reflects the economic impacts of the Great Recession. However, overall there is a very consistent shape to the age pattern which follows traditional lifecycle changes. Second, ages over 25 experience net in-migration though that positive rate stabilizes around age 50 at just over the zero line. Again, that represents stability that once you come to New Hampshire you tend to stay but it's most attractive for in-migrants in their late 20's to 40's. Third, there is high out-migration in the oldest ages. The stability of most ages lends support to the assumption for the projections that the age pattern of migration can be held constant - even though allowance can still be made for positive or negative shifts in total migration.

Table 2: Life Table Residual Migration, Belknap County Total

Age in 2010	2010			5-gr Survival	2015		2010-2015			5-gr Survival	2020		$2015-2020$ Net Migration		Age in 2020
	Total Popul	Special Popul	HHold Popul				------	Migran	------						
					Expected	Actual	Age	Number	Rate		Expected	-Actual-	Number	Rate	
Births 15-20	1,172									0.99538	1,167	1,277	110	0.094209	Under 5
Births 10-15	1,312		1,312	0.99538	1,305	1,357	Under 5	52	0.03931	0.99888	1,355	1,520	165	0.121239	5-9
Under 5	1,548	0	1,548	0.99888	1,546	1,617	5-9	71	0.04569	0.99968	1,616	1,748	132	0.081331	10-14
5-9	1,618	0	1,618	0.99968	1,617	1,648	10-14	31	0.01886	0.99310	1,647	1,590	-57	-0.034289	15-19
10-14	1,791	0	1,791	0.99910	1,789	1,624	15-19	-165	-0.09234	0.99826	1,621	1,499	-122	-0.075232	20-24
15-19	1,783	0	1,783	0.99826	1,780	1,516	20-24	-264	-0.14801	0.99803	1,513	1,658	145	0.095634	25-29
20-24	1,317	0	1,317	0.99803	1,314	1,459	25-29	145	0.10979	0.99769	1,456	1,654	198	0.135962	30-34
25-29	1,623	0	1,623	0.99769	1,619	1,689	30-34	70	0.04297	0.99678	1,684	1,886	202	0.119862	35-39
30-34	1,561	0	1,561	0.99678	1,556	1,638	35-39	82	0.05255	0.99520	1,630	1,758	128	0.078057	40-44
35-39	1,836	0	1,836	0.99520	1,827	1,802	40-44	-25	-0.01372	0.99255	1,789	1,886	97	0.05406	45-49
40-44	2,093	0	2,093	0.99255	2,077	2,060	45-49	-17	-0.00832	0.98772	2,035	2,242	207	0.100625	50-54
45-49	2,508	0	2,508	0.98772	2,477	2,532	50-54	55	0.02184	0.98005	2,481	2,730	249	0.098146	55-59
50-54	2,692	0	2,692	0.98005	2,638	2,667	55-59	29	0.01066	0.96720	2,580	2,935	355	0.133252	60-64
55-59	2,486	0	2,486	0.96720	2,404	2,530	60-64	126	0.05062	0.94615	2,394	2,544	150	0.05917	65-69
60-64	2,362	10	2,352	0.94615	2,225	2,234	65-69	9	0.00389	0.91464	2,044	2,108	65	0.028877	70-74
65-69	1,607	43	1,564	0.91464	1,431	1,442	70-74	11	0.00709	0.86751	1,251	1,260	9	0.00625	75-79
70-74	1,125	39	1,086	0.86751	942	935	75-79	-7	-0.00617	0.78940	738	769	31	0.033444	80-84
75-79	907	64	843	0.78940	665	679	80-84	13	0.01582	0.66503	451	380	. 72	-0.105844	85-89
80-84	815	62	753	0.66503	500	744	85-89	244	0.32369	0.40417	301	126	-175	-0.234625	90.
85.	936	236	700	0.40417	283	991	90*	708	1.01205						
Total	30,608	455	31,464		29,999	31,164		1,165	0.03703		29,751	31,570	1,818	0.05834	

Figure 13: New Hampshire Residual Net Migration Rate for Males 2010-2020

Figure 14: New Hampshire Residual Net Migration Rate for Females 2010-2020

Of course, this pattern is not consistent for every county and there is much more variability by age and gender at the county level. Figures 15 through 24 present the county level patterns for the total population, though the projection model uses the age-sex specific migration patterns and they show more variability than for the total population.

Figure 15: Belknap County Residual Net Migration Rate

Figure 17: Cheshire County Residual Net Migration Rate

Figure 19: Grafton County Residual Net Migration Rate

Figure 21: Merrimack County Residual Net Migration Rate

Figure 16: Carroll County Residual Net Migration Rate

Figure 18: Coos County Residual Net Migration Rate

Figure 20: Hillsborough County Residual Net Migration Rate

Figure 22: Rockingham County Residual Net Migration Rate

Figure 23: Strafford County Residual Net Migration Rate

Figure 24: Sullivan County Residual Net Migration Rate

As with the fertility assumption, the Crude Migration Rates, shown in Table 3, reflect the net migration estimated using the Life Table Residual Migration methodology. These figures represent the starting point input to the Cohort-Component Projection model.

Table 3: Summary Crude Migration Rates

	Total		Male		Female	
	2010-2015	2015-2020	2010-2015	2015-2020	2010-2015	2015-2020
Belknap	1.14%	6.94%	1.87%	$\mathbf{8 . 0 3 \%}$	0.55%	6.03%
Carroll	2.00%	9.43%	2.77%	10.41%	1.43%	8.72%
Cheshire	0.37%	3.51%	0.89%	4.08%	-0.06%	3.07%
Coos	-3.23%	2.39%	-2.34%	5.40%	-3.98%	-0.46%
Grafton	1.48%	4.05%	1.74%	5.15%	1.35%	3.14%
Hillsborough	0.81%	3.84%	0.41%	4.83%	1.26%	2.93%
Merrimack	1.69%	4.23%	2.67%	3.62%	0.77%	4.89%
Rockingham	3.20%	5.25%	3.74%	5.73%	2.72%	4.87%
Strafford	1.72%	3.92%	1.94%	5.04%	1.55%	2.88%
Sullivan	-0.57%	1.33%	-0.28%	2.57%	-0.78%	0.24%

Mortality Analysis

Mortality is the least volatile of the three components of change. In the projections model, the population is aged by applying age- and sex-specific survivorship ratios for a five-year period to the base population by five-year age group. The model allows for area-specific assumptions regarding the change in survivorship. However, there is little variation in survivorship in the younger ages, with larger impacts among the elderly. Because of its population size, computation of the life table and survivorship ratios by sex are possible for Hillsborough County but no other New Hampshire counties. For this reason, regional life tables were prepared by creating county groups based on similar characteristics and geography. Groupings included: Belknap and Merrimack; Rockingham and Strafford; Carroll, Coos and Grafton; Cheshire and Sullivan.

The life table analysis requires a more detailed distribution of deaths by age than the fertility or migration analysis. Infant mortality is relatively high in the first year of life, requiring a breakdown of the 0 to 5 ages into the under 1 and 1 to 4 years. Data for 5 -year age groups is sufficient for the other ages but also needs to account for deaths beyond the age of 85 and over. This requires detail for the 85 to 89,90 to 94 and 95 and over population. Current data for these more detailed age group data are not available from the Department of State. As a result, life tables were prepared using a 3-year average of deaths for 2009, 2010 and 2011 centered on the 2010 Census population. Life expectancy has increased since 2010 and while this is not ideal, most of the increase is due to greater longevity of the senior population - age groups which have a declining impact on the overall projections.

Figures 25 and 26 illustrate the age-specific survival rate distribution for New Hampshire's male and female population. They clearly show the high level of survivorship in the younger ages those most critical for the projection of women of childbearing age - and only slight differences in the older ages.

Figure 25: New Hampshire Survival Rate Distribution for Males Figure 26: New Hampshire Survival Rate Distribution for Females

The most common measure resulting from life table analysis is the expectation of life at birth. The age-specific death rates used in the calculation area are based on the 2009 to 2011 mortality experience of New Hampshire residents. If these rates were to continue into the future, newborn males could expect to live 81.1 years while newborn females could expect to live to 84.6 years. The increased life expectancy of females over males is typical and is reflected in the positive ratios of females to males in the older ages.
Table 4:Life Expectancy at Birth for New Hampshire Counties

	Total	Male	Female
Hillsborough	83.0	81.2	84.7
Belknap/Merrimack	82.0	80.4	83.6
Rockingham/Strafford	83.9	82.2	85.5
Carroll/Coos/Grafton	82.0	80.0	84.1
Cheshire/Sullivan	81.5	79.5	83.3

Model Calibration

The fertility, migration and mortality rates developed in the Components of Change module utilize the Census Bureau's Population Estimates Program estimates for July 1, 2015, and the Demographic Analysis estimates for April 1, 2020. As estimates, there is always some unmeasurable error because there is no actual census count that can be used to evaluate the estimates. As a result of this potential error, the calculated Total Fertility Rates, the Crude Migration Rates and survival rates approach, but will not exactly duplicate actual data.

The 2020 Census provides the best total population and actual reported births and deaths from the New Hampshire Department of State provide the most accurate totals for the model to replicate. This is done through a calibration process whereby the projections model is run for the 2010 to 2020 period making adjustments to the fertility, migration and mortality rates to most closely represent the actual reported data.

This is an iterative process where fertility and mortality rates are adjusted to reflect the actual reported births and deaths. There is no corresponding migration total, so migration rates are adjusted to reflect the final 2020 Census population. The following steps are repeated many times because of the interaction of the demographic processes. For example, changing fertility rates to generate more or fewer births will change the number of migrants and survivors. Changing the migration rates will change the number of women of childbearing age and hence the number of births. Tables 5 and 6 present the initial TFR and CMR rates that were output from the Components of Change module and the resulting rates required to calibrate the 2010 to 2020 projections model to meet the reported number of births, deaths, migrants and 2020 Census populations.

Table 5: Total Fertility Rate		
2015-2020 Components of Change 2015-2020 Calibration Belknap 1.399 1.600 Carroll 1.259 1.520 Cheshire 1.278 1.470 Coos 1.567 1.670 Grafton 1.292 1.663 Hillsborough 1.392 1.610 Merrimack 1.499 1.865 Rockingham 1.125 1.252 Strafford 1.333 1.620 Sullivan 1.493 1.650		

Table 6: Crude Migration Rate		
	2015-2020 Components of Change	2015-2020 Calibration
Belknap	5.83	7.00
Carroll	8.72	6.95
Cheshire	3.07	0.71
Coos	-0.46	-0.40
Grafton	3.14	3.90
Hillsborough	2.93	2.86
Merrimack	4.89	4.35
Rockingham	4.87	3.48
Strafford	2.88	3.27
Sullivan	0.24	-0.50

Summary and Recommendations

The Components of Change analysis provides the baseline data for input to the CohortComponent Projections model. This includes:

- Age-specific fertility patterns by age of mother and the summary Total Fertility Rate which will generate future births,
- Age-sex specific migration patterns and the summary Crude Migration Rate which will impact the future number of women of childbearing age and future births,
- Age-sex specific survivorship ratios used to age each age-sex cohort to future projection dates, and
- College enrollment, prison and nursing home residents used to calculate the nonspecial (household) population to which the fertility, mortality and migration rates will be applied.

This analysis also points to a couple of issues/concerns to be addressed in the projections model:

- In the absence of the age distribution results from the 2020 Census, the Census Bureau's 2020 Demographic Analysis estimates provide the best data on the population. However, these estimates needed to be adjusted to the final 2020 Census count of total county population. Potential differences between the estimated and actual 2020 age distribution is a concern. Final age data is not expected to be released until 2023, at which time it would be useful to update the analysis and future projections.
- Current data on college enrollment was obtained from the U.S. Department of Education IPEDS system. This system does not provide any data on projected enrollments. In the absence of such a source, the assumption will be made that enrollment is stable throughout the projections period. The same assumption will be made for prison and nursing home populations.
- The age-specific fertility rates and age-sex specific migration rates establish an appropriate starting point for the projections. These patterns will be maintained throughout the projection periods, and changes in the TFR and CMR will be the primary drivers of future population change.

Projected Summary Populations and Components of Change Tables

Table 1: 5-Year Projected Births for New Hampshire and Counties

State/County	5-year Projected Births					
	$2020-25$	$2025-30$	$2030-35$	$2035-40$	$2040-45$	$2045-50$
New Hampshire	64,992	65,816	$\mathbf{6 4 , 4 2 0}$	$\mathbf{6 1 , 9 0 8}$	$\mathbf{5 9 , 7 1 5}$	$\mathbf{5 9 , 6 1 8}$
Belknap	2,818	2,863	2,863	2,817	2,755	2,741
Carroll	1,799	1,781	1,700	1,618	1,594	1,624
Cheshire	3,134	2,985	2,802	2,676	2,621	2,625
Coos	1,220	1,174	1,110	1,050	1,012	996
Grafton	3,830	3,750	3,676	3,606	3,469	3,363
Hillsborough	23,227	23,672	23,150	22,218	21,466	21,505
Merrimack	7,675	7,712	7,572	7,349	7,206	7,293
Rockingham	12,525	12,839	12,465	11,712	11,099	11,081
Strafford	6,811	7,160	7,293	7,158	6,852	6,773
Sullivan	1,953	1,880	1,789	1,704	1,641	1,617

Table 2: 5-Year Projected Deaths for New Hampshire and Counties

State/County	5-year Projected Deaths					
	$\mathbf{2 0 2 0 - 2 5}$	$\mathbf{2 0 2 5 - 3 0}$	$\mathbf{2 0 3 0 - 3 5}$	$\mathbf{2 0 3 5 - 4 0}$	$\mathbf{2 0 4 0 - 4 5}$	$\mathbf{2 0 4 5 - 5 0}$
New Hampshire	$\mathbf{6 3 , 5 5 0}$	$\mathbf{7 4 , 0 9 3}$	$\mathbf{8 8 , 5 1 8}$	$\mathbf{1 0 3 , 2 4 9}$	$\mathbf{1 1 4 , 0 1 3}$	$\mathbf{1 2 0 , 0 7 4}$
Belknap	3,744	4,345	5,172	5,936	6,421	6,615
Carroll	2,519	3,087	3,923	4,817	5,453	5,763
Cheshire	3,528	4,065	4,769	5,453	5,852	5,914
Coos	2,006	2,197	2,455	2,702	2,830	2,812
Grafton	5,456	6,445	7,697	8,896	9,736	10,089
Hillsborough	18,954	21,747	25,661	29,726	32,892	34,916
Merrimack	8,359	9,540	11,162	12,821	13,979	14,529
Rockingham	11,152	13,753	17,317	21,103	23,969	25,929
Strafford	6,208	6,954	7,999	9,040	9,852	10,347
Sullivan	1,624	1,960	2,363	2,755	3,029	3,160

State/County	5-year Projected Net-Migrants						
	$2020-25$	$\mathbf{2 0 2 5 - 3 0}$	$\mathbf{2 0 3 0 - 3 5}$	$\mathbf{2 0 3 5 - 4 0}$	$\mathbf{2 0 4 0 - 4 5}$	$\mathbf{2 0 4 5 - 5 0}$	
New Hampshire	51,626	50,970	51,844	52,061	52,471	52,416	
Belknap	3,588	3,752	3,543	3,612	3,638	3,639	
Carroll	2,904	3,038	3,139	3,196	3,194	3,155	
Cheshire	1,660	1,693	1,709	1,701	1,674	1,638	
Coos	793	791	789	768	741	711	
Grafton	5,490	5,745	5,452	5,538	5,553	5,510	
Hillsborough	13,667	12,093	12,513	12,816	12,973	13,023	
Merrimack	6,263	6,518	6,729	6,869	6,935	6,941	
Rockingham	12,039	12,575	13,044	12,506	12,626	12,618	
Strafford	4,669	4,201	4,354	4,483	4,573	4,629	
Sullivan	553	564	572	572	564	552	

Table 4: Projected Total Fertility Rate for New Hampshire Counties

County	Projected Total Fertility Rate					
	$\mathbf{2 0 2 0 - 2 5}$	$2025-30$	$\mathbf{2 0 3 0 - 3 5}$	$2035-40$	$\mathbf{2 0 4 0}-45$	$\mathbf{2 0 4 5 - 5 0}$
Belknap	1.680	1.680	1.680	1.680	1.680	1.680
Carroll	1.596	1.596	1.596	1.596	1.596	1.596
Cheshire	1.544	1.544	1.544	1.544	1.544	1.544
Coos	1.754	1.754	1.754	1.754	1.754	1.754
Grafton	1.746	1.746	1.746	1.746	1.746	1.746
Hillsborough	1.691	1.691	1.691	1.691	1.691	1.691
Merrimack	1.958	1.958	1.958	1.958	1.958	1.958
Rockingham	1.315	1.315	1.315	1.315	1.315	1.315
Strafford	1.701	1.701	1.701	1.701	1.701	1.701
Sullivan	1.733	1.733	1.733	1.733	1.733	1.733

County	Projected Crude Net-Migration Rate						
		$2020-25$	$2025-30$	$2030-35$	$2035-40$	$\mathbf{2 0 4 0 - 4 5}$	$2045-50$
Belknap	Male	6.00	6.00	5.50	5.50	5.50	5.50
	Female	6.00	6.00	5.50	5.50	5.50	5.50
Carroll	Male	6.00	6.00	6.00	6.00	6.00	6.00
	Female	6.00	6.00	6.00	6.00	6.00	6.00
Cheshire	Male	2.50	2.50	2.50	2.50	2.50	2.50
	Female	2.50	2.50	2.50	2.50	2.50	2.50
Coos	Male	3.00	3.00	3.00	3.00	3.00	3.00
	Female	3.00	3.00	3.00	3.00	3.00	3.00
Grafton	Male	6.50	6.50	6.00	6.00	6.00	6.00
	Female	6.50	6.50	6.00	6.00	6.00	6.00
Hillsborough	Male	3.50	3.00	3.00	3.00	3.00	3.00
	Female	3.50	3.00	3.00	3.00	3.00	3.00
Merrimack	Male	4.50	4.50	4.50	4.50	4.50	4.50
	Female	4.50	4.50	4.50	4.50	4.50	4.50
Rockingham	Male	4.00	4.00	4.00	3.75	3.75	3.75
	Female	4.00	4.00	4.00	3.75	3.75	3.75
Strafford	Male	4.00	3.50	3.50	3.50	3.50	3.50
	Female	4.00	3.50	3.50	3.50	3.50	3.50
Sullivan	Male	1.50	1.50	1.50	1.50	1.50	1.50
	Female	1.50	1.50	1.50	1.50	1.50	1.50

Table 6: Projected Populations for New Hampshire by Age Groups and Sex

State of	2020			2025			2030			2035		
Hampshire Totals	Male	Female	Total									
0-4	32,392	31,214	63,606	37,904	36,039	73,943	38,408	36,512	74,920	37,564	35,707	73,271
5-9	35,557	33,599	69,156	33,580	32,758	66,338	39,177	37,707	76,884	39,682	38,237	77,919
10-14	37,985	36,312	74,297	36,260	34,443	70,703	34,155	33,475	67,630	39,838	38,575	78,413
15-19	42,330	41,350	83,680	39,451	38,611	78,062	37,782	36,916	74,698	36,001	36,147	72,148
20-24	44,889	42,721	87,610	43,007	42,682	85,689	40,184	39,941	80,125	38,624	38,278	76,902
25-29	46,217	42,329	88,546	44,853	40,618	85,471	42,684	40,493	83,177	39,414	37,314	76,728
30-34	45,541	42,807	88,348	48,954	46,234	95,188	47,266	44,172	91,438	44,935	44,089	89,024
35-39	42,417	41,354	83,771	48,062	45,334	93,396	51,441	48,829	100,270	49,681	46,686	96,367
40-44	38,284	38,660	76,944	43,044	42,439	85,483	48,676	46,422	95,098	51,971	50,057	102,028
45-49	41,192	42,048	83,240	38,179	38,871	77,050	42,821	42,538	85,359	48,430	46,578	95,008
50-54	47,409	48,495	95,904	40,233	41,745	81,978	37,163	38,483	75,646	41,686	42,163	83,849
55-59	53,814	56,053	109,867	46,227	48,458	94,685	39,107	41,598	80,705	36,102	38,389	74,491
60-64	52,508	54,643	107,151	52,746	55,795	108,541	45,177	48,083	93,260	38,236	41,343	79,579
65-69	43,041	45,766	88,807	51,130	54,088	105,218	51,172	55,042	106,214	43,836	47,514	91,350
70-74	34,251	37,254	71,505	41,701	44,834	86,535	49,430	52,889	102,319	49,426	53,863	103,289
75-79	21,474	24,741	46,215	32,291	35,230	67,521	39,277	42,242	81,519	46,544	49,826	96,370
80-84	12264	15780	28044	18,281	22,218	40,499	27,256	31,538	58,794	33,073	37,834	70,907
85 and over	11,013	19,829	30,842	13,847	20,454	34,301	19,649	25,581	45,230	28,880	34,522	63,402
65 and over	122,043	143,370	265,413	157,250	176,824	334,074	186,784	207,292	394,076	201,759	223,559	425,318
Total	682,578	694,955	1,377,533	709,750	720,851	1,430,601	730,825	742,461	1,473,286	743,923	757,122	1,501,045
	2040			2045			2050					
	Male	Female	Total	Male	Female	Total	Male	Female	Total			
0-4	36,045	34,271	70,316	34,734	33,030	67,764	34,686	32,987	67,673			
5-9	38,905	37,518	76,423	37,443	36,109	73,552	36,132	34,844	70,976			
10-14	40,463	39,253	79,716	39,805	38,628	78,433	38,360	37,223	75,583			
15-19	41,139	40,664	81,803	41,831	41,366	83,197	41,276	40,853	82,129			
20-24	36,977	37,608	74,585	41,895	42,101	83,996	42,658	42,899	85,557			
25-29	37,725	35,437	73,162	35,846	34,752	70,598	41,572	40,078	81,650			
30-34	41,455	40,623	82,078	39,749	38,618	78,367	37,709	37,880	75,589			
35-39	47,265	46,699	93,964	43,639	43,092	86,731	41,862	41,020	82,882			
40-44	50,398	48,001	98,399	48,036	48,142	96,178	44,362	44,431	88,793			
45-49	51,859	50,395	102,254	50,483	48,463	98,946	48,138	48,685	96,823			
50-54	47,287	46,308	93,595	50,789	50,242	101,031	49,515	48,371	97,886			
55-59	40,623	42,227	82,850	46,250	46,494	92,744	49,750	50,498	100,248			
60-64	35,392	38,306	73,698	39,957	42,282	82,239	45,512	46,552	92,064			
65-69	37,265	41,070	78,335	34,613	38,210	72,823	39,111	42,206	81,317			
70-74	42,448	46,650	89,098	36,197	40,445	76,642	33,655	37,673	71,328			
75-79	46,665	50,921	97,586	40,201	44,306	84,507	34,322	38,524	72,846			
80-84	39,263	44,823	84,086	39,538	45,976	85,514	34,173	40,091	74,264			
85 and over	37,043	42,779	79,822	45,250	51,443	96,693	48,617	55,684	104,301			
65 and over	202,684	226,243	428,927	195,799	220,380	416,179	189,878	214,178	404,056			
Total	748,217	763,553	1,511,770	746,256	763,699	1,509,955	741,410	760,499	1,501,909			

Table 7: Projected Populations for Belknap County by Age Groups and Sex

Table 8: Projected Populations for Carroll County by Age Groups and Sex

Carroll County	2020			2025			2030			2035		
	Male	Female	Total									
0-4	912	853	1,765	1,043	1,015	2,058	1,032	1,006	2,038	985	960	1,945
5-9	1,071	1,053	2,124	996	923	1,919	1,141	1,104	2,245	1,134	1,101	2,235
10-14	1,221	1,043	2,264	1,115	1,105	2,220	1,039	974	2,013	1,196	1,173	2,369
15-19	1,143	1,058	2,201	1,119	929	2,048	1,024	990	2,014	959	880	1,839
20-24	1,152	1,008	2,160	964	925	1,889	947	817	1,764	871	878	1,749
25-29	1,205	1,119	2,324	1,192	1,048	2,240	1,001	966	1,967	987	859	1,846
30-34	1,132	1,118	2,250	1,277	1,278	2,555	1,267	1,202	2,469	1,068	1,116	2,184
35-39	1,204	1,235	2,439	1,236	1,234	2,470	1,397	1,418	2,815	1,391	1,342	2,733
40-44	1,067	1,186	2,253	1,232	1,329	2,561	1,268	1,334	2,602	1,440	1,543	2,983
45-49	1,316	1,343	2,659	1,075	1,199	2,274	1,246	1,347	2,593	1,288	1,362	2,650
50-54	1,635	1,654	3,289	1,341	1,381	2,722	1,100	1,242	2,342	1,280	1,406	2,686
55-59	2,062	2,324	4,386	1,704	1,834	3,538	1,403	1,543	2,946	1,156	1,397	2,553
60-64	2,482	2,664	5,146	2,326	2,607	4,933	1,930	2,075	4,005	1,597	1,757	3,354
65-69	2,414	2,540	4,954	2,745	2,964	5,709	2,584	2,924	5,508	2,155	2,345	4,500
70-74	2,173	2,117	4,290	2,528	2,598	5,126	2,888	3,059	5,947	2,730	3,038	5,768
75-79	1,343	1,281	2,624	2,089	1,966	4,055	2,443	2,433	4,876	2,804	2,884	5,688
80-84	683	783	1466	1,097	1,088	2,185	1,709	1,685	3,394	2,008	2,101	4,109
85 and over	626	891	1,517	788	1,003	1,791	1,183	1,302	2,485	1,835	1,913	3,748
65 and over	7,239	7,612	14,851	9,247	9,619	18,866	10,807	11,403	22,210	11,532	12,281	23,813
Total	24,841	25,270	50,111	25,867	26,426	52,293	26,602	27,421	54,023	26,884	28,055	54,939
$\begin{aligned} & \text { Carroll } \\ & \text { County } \\ & \hline \end{aligned}$	2040						2050					
	Male	Female	Total	 Male 2045		Total	Male	Female	Total			
0-4	939	914	1,853	924	900	1,824	942	917	1,859			
5-9	1,089	1,058	2,147	1,041	1,012	2,053	1,026	997	2,023			
10-14	1,196	1,178	2,374	1,153	1,136	2,289	1,103	1,087	2,190			
15-19	1,113	1,068	2,181	1,118	1,077	2,195	1,077	1,040	2,117			
20-24	823	787	1,610	958	959	1,917	963	969	1,932			
25-29	914	930	1,844	866	837	1,703	1,010	1,021	2,031			
30-34	1,060	998	2,058	986	1,085	2,071	934	977	1,911			
35-39	1,181	1,254	2,435	1,176	1,126	2,302	1,094	1,225	2,319			
40-44	1,444	1,470	2,914	1,230	1,379	2,609	1,225	1,239	2,464			
45-49	1,473	1,587	3,060	1,483	1,519	3,002	1,263	1,425	2,688			
50-54	1,333	1,431	2,764	1,529	1,674	3,203	1,540	1,604	3,144			
55-59	1,354	1,591	2,945	1,415	1,627	3,042	1,624	1,904	3,528			
60-64	1,325	1,602	2,927	1,556	1,831	3,387	1,626	1,872	3,498			
65-69	1,796	2,001	3,797	1,497	1,833	3,330	1,758	2,094	3,852			
70-74	2,291	2,453	4,744	1,916	2,101	4,017	1,597	1,926	3,523			
75-79	2,669	2,887	5,556	2,248	2,344	4,592	1,880	2,012	3,892			
80-84	2,322	2,511	4,833	2,221	2,526	4,747	1,874	2,054	3,928			
85 and over	2,373	2,520	4,893	2,871	3,119	5,990	3,012	3,382	6,394			
65 and over	11,451	12,372	23,823	10,753	11,923	22,676	10,121	11,468	21,589			
Total	26,695	28,240	54,935	26,188	28,085	54,273	25,548	27,745	53,293			

Table 9: Projected Populations for Cheshire County by Age Groups and Sex

Cheshire County	2020			2025			2030			2035		
	Male	Female	Total									
0-4	1,726	1,726	3,452	1,894	1,838	3,732	1,805	1,752	3,557	1,694	1,643	3,337
5-9	1,924	1,863	3,787	1,789	1,815	3,604	1,964	1,936	3,900	1,875	1,853	3,728
10-14	1,980	1,902	3,882	1,912	1,851	3,763	1,779	1,807	3,586	1,957	1,936	3,893
15-19	2,569	2,660	5,229	2,438	2,581	5,019	2,384	2,546	4,930	2,281	2,520	4,801
20-24	2,550	2,628	5,178	2,548	2,527	5,075	2,439	2,466	4,905	2,397	2,443	4,840
25-29	2,269	2,224	4,493	1,890	1,997	3,887	1,887	1,858	3,745	1,752	1,776	3,528
30-34	2,488	2,387	4,875	2,333	2,334	4,667	1,935	2,094	4,029	1,936	1,952	3,888
35-39	2,280	2,188	4,468	2,604	2,481	5,085	2,441	2,431	4,872	2,025	2,188	4,213
40-44	1,895	1,961	3,856	2,280	2,225	4,505	2,606	2,531	5,137	2,447	2,490	4,937
45-49	1,968	2,119	4,087	1,835	1,955	3,790	2,211	2,225	4,436	2,532	2,542	5,074
50-54	2,466	2,453	4,919	1,980	2,106	4,086	1,847	1,948	3,795	2,230	2,225	4,455
55-59	2,787	3,008	5,795	2,430	2,478	4,908	1,953	2,132	4,085	1,825	1,981	3,806
60-64	2,942	3,120	6,062	2,772	3,000	5,772	2,421	2,479	4,900	1,951	2,144	4,095
65-69	2,692	2,815	5,507	2,907	3,091	5,998	2,743	2,981	5,724	2,404	2,480	4,884
70-74	2,157	2,315	4,472	2,612	2,765	5,377	2,825	3,044	5,869	2,671	2,948	5,619
75-79	1,279	1,530	2,809	1,992	2,163	4,155	2,417	2,586	5,003	2,619	2,857	5,476
80-84	783	1004	1787	1,055	1,329	2,384	1,632	1,882	3,514	1,979	2,260	4,239
85 and over	665	1,135	1,800	793	1,122	1,915	1,035	1,318	2,353	1,535	1,732	3,267
65 and over	7,576	8,799	16,375	9,359	10,470	19,829	10,652	11,811	22,463	11,208	12,277	23,485
Total	37,420	39,038	76,458	38,064	39,658	77,722	38,324	40,016	78,340	38,110	39,970	78,080
Cheshire County	2040			2045			2050					
	Male	Female	Total	Male	Female	Total	Male	Female	Total			
0-4	1,617	1,570	3,187	1,584	1,537	3,121	1,587	1,540	3,127			
5-9	1,765	1,746	3,511	1,690	1,673	3,363	1,656	1,638	3,294			
10-14	1,874	1,862	3,736	1,770	1,760	3,530	1,694	1,686	3,380			
15-19	2,430	2,630	5,060	2,369	2,578	4,947	2,285	2,497	4,782			
20-24	2,316	2,429	4,745	2,445	2,525	4,970	2,394	2,480	4,874			
25-29	1,703	1,750	3,453	1,603	1,733	3,336	1,768	1,869	3,637			
30-34	1,799	1,872	3,671	1,753	1,849	3,602	1,647	1,829	3,476			
35-39	2,033	2,049	4,082	1,893	1,971	3,864	1,843	1,944	3,787			
40-44	2,036	2,251	4,287	2,050	2,113	4,163	1,908	2,030	3,938			
45-49	2,385	2,512	4,897	1,990	2,278	4,268	2,003	2,137	4,140			
50-54	2,564	2,555	5,119	2,422	2,533	4,955	2,019	2,296	4,315			
55-59	2,211	2,274	4,485	2,550	2,619	5,169	2,409	2,596	5,005			
60-64	1,830	2,002	3,832	2,222	2,304	4,526	2,560	2,651	5,211			
65-69	1,949	2,159	4,108	1,835	2,025	3,860	2,222	2,324	4,546			
70-74	2,348	2,465	4,813	1,908	2,152	4,060	1,797	2,017	3,814			
75-79	2,485	2,783	5,268	2,190	2,339	4,529	1,780	2,044	3,824			
80-84	2,151	2,510	4,661	2,050	2,454	4,504	1,810	2,062	3,872			
85 and over	1,961	2,131	4,092	2,237	2,448	4,685	2,252	2,531	4,783			
65 and over	10,894	12,048	22,942	10,220	11,418	21,638	9,861	10,978	20,839			
Total	37,457	39,550	77,007	36,561	38,891	75,452	35,634	38,171	73,805			

Table 10: Projected Populations for Coos County by Age Groups and Sex

CoosCounty	2020			2025			2030			2035		
	Male	Female	Total									
0-4	663	591	1,254	632	602	1,234	608	579	1,187	576	548	1,124
5-9	680	644	1,324	677	637	1,314	647	650	1,297	622	626	1,248
10-14	801	714	1,515	685	659	1,344	684	653	1,337	653	668	1,321
15-19	777	723	1,500	751	663	1,414	644	613	1,257	643	609	1,252
20-24	918	653	1,571	744	622	1,366	722	571	1,293	622	530	1,152
25-29	1,052	710	1,762	1,075	668	1,743	887	637	1,524	862	586	1,448
30-34	933	715	1,648	1,040	738	1,778	1,064	695	1,759	890	664	1,554
35-39	941	763	1,704	943	760	1,703	1,057	785	1,842	1,082	741	1,823
40-44	928	797	1,725	998	790	1,788	1,003	788	1,791	1,124	816	1,940
45-49	1,038	872	1,910	893	813	1,706	966	808	1,774	971	807	1,778
50-54	1,177	1,001	2,178	1,017	875	1,892	870	817	1,687	945	814	1,759
55-59	1,281	1,289	2,570	1,091	1,019	2,110	942	892	1,834	802	835	1,637
60-64	1,426	1,331	2,757	1,293	1,337	2,630	1,104	1,060	2,164	953	931	1,884
65-69	1,300	1,300	2,600	1,437	1,326	2,763	1,308	1,334	2,642	1,118	1,063	2,181
70-74	1,087	974	2,061	1,212	1,251	2,463	1,345	1,279	2,624	1,223	1,289	2,512
75-79	659	685	1,344	985	898	1,883	1,103	1,152	2,255	1,224	1,179	2,403
80-84	404	469	873	532	586	1,118	791	769	1,560	884	988	1,872
85 and over	330	642	972	400	625	1,025	518	702	1,220	742	860	1,602
65 and over	3,780	4,070	7,850	4,566	4,686	9,252	5,065	5,236	10,301	5,191	5,379	10,570
Total	16,395	14,873	31,268	16,405	14,869	31,274	16,263	14,784	31,047	15,936	14,554	30,490
$\begin{aligned} & \text { Coos } \\ & \text { County } \end{aligned}$	2040			2045			2050					
	Male	Female	Total	Male	Female	Total	Male	Female	Total			
0-4	545	519	1,064	524	499	1,023	516	492	1,008			
5-9	591	594	1,185	560	564	1,124	540	544	1,084			
10-14	631	645	1,276	600	614	1,214	569	583	1,152			
15-19	617	624	1,241	596	605	1,201	568	576	1,144			
20-24	623	528	1,151	600	543	1,143	582	527	1,109			
25-29	756	545	1,301	758	545	1,303	733	561	1,294			
30-34	871	613	1,484	773	572	1,345	776	572	1,348			
35-39	904	710	1,614	884	657	1,541	783	614	1,397			
40-44	1,154	773	1,927	963	743	1,706	944	688	1,632			
45-49	1,099	838	1,937	1,131	796	1,927	936	765	1,701			
50-54	953	815	1,768	1,087	849	1,936	1,122	807	1,929			
55-59	877	834	1,711	886	838	1,724	1,016	873	1,889			
60-64	814	874	1,688	891	875	1,766	902	880	1,782			
65-69	969	939	1,908	829	885	1,714	909	887	1,796			
70-74	1,049	1,031	2,080	910	913	1,823	780	861	1,641			
75-79	1,118	1,193	2,311	960	960	1,920	834	853	1,687			
80-84	984	1,015	1,999	901	1,030	1,931	777	830	1,607			
85 and over	885	1,078	1,963	1,004	1,188	2,192	984	1,244	2,228			
65 and over	5,005	5,256	10,261	4,604	4,976	9,580	4,284	4,675	8,959			
Total	15,440	14,168	29,608	14,857	13,676	28,533	14,271	13,157	27,428			

Table 11: Projected Populations for Grafton County by Age Groups and Sex

Table 12: Projected Populations for Hillsborough County by Age Groups and Sex

ough	2020			2025			2030			2035		
County	Male	Female	Total									
0-4	11,105	10,720	21,825	12,871	12,438	25,309	13,121	12,678	25,799	12,831	12,398	25,229
5-9	11,712	10,919	22,631	11,234	10,866	22,100	12,943	12,523	25,466	13,187	12,778	25,965
10-14	12,390	11,808	24,198	11,827	10,980	22,807	11,276	10,853	22,129	12,984	12,522	25,506
15-19	12,726	12,127	24,853	12,070	11,435	23,505	11,476	10,629	22,105	10,962	10,529	21,491
20-24	13,375	12,533	25,908	12,563	12,430	24,993	11,876	11,693	23,569	11,316	10,931	22,247
25-29	15,832	14,512	30,344	15,397	14,004	29,401	14,339	13,802	28,141	13,502	12,885	26,387
30-34	15,452	14,537	29,989	17,311	16,011	33,322	16,745	15,356	32,101	15,584	15,147	30,731
35-39	13,917	13,410	27,327	15,968	15,105	31,073	17,802	16,540	34,342	17,208	15,875	33,083
40-44	12,499	12,582	25,081	13,713	13,610	27,323	15,664	15,243	30,907	17,471	16,717	34,188
45-49	13,190	13,418	26,608	12,492	12,601	25,093	13,637	13,545	27,182	15,584	15,192	30,776
50-54	15,045	15,085	30,130	12,784	13,175	25,959	12,033	12,290	24,323	13,134	13,225	26,359
55-59	16,588	16,717	33,305	14,532	14,823	29,355	12,272	12,860	25,132	11,543	12,009	23,552
60-64	14,871	15,256	30,127	15,750	16,108	31,858	13,725	14,193	27,918	11,591	12,330	23,921
65-69	11,392	12,093	23,485	13,951	14,603	28,554	14,690	15,311	30,001	12,804	13,522	26,326
70-74	8,752	9,777	18,529	10,881	11,721	22,602	13,258	14,070	27,328	13,953	14,768	28,721
75-79	5,438	6,800	12,238	8,138	9,237	17,375	10,072	10,982	21,054	12,272	13,173	25,445
80-84	3250	4367	7617	4,715	6,228	10,943	6,961	8,403	15,364	8,583	9,997	18,580
85 and over	3,035	5,707	8,742	3,757	5,552	9,309	5,181	6,854	12,035	7,503	8,890	16,393
65 and over	31,867	38,744	70,611	41,442	47,341	88,783	50,162	55,620	105,782	55,115	60,350	115,465
Total	210,569	212,368	422,937	219,954	220,927	440,881	227,071	227,825	454,896	232,012	232,888	464,900
Hillsborough County	2040			2045			2050					
	Male	Female	Total	Male	Female	Total	Male	Female	Total			
0-4	12,315	11,899	24,214	11,898	11,496	23,394	11,920	11,517	23,437			
5-9	12,917	12,537	25,454	12,425	12,065	24,490	12,016	11,666	23,682			
10-14	13,251	12,819	26,070	13,010	12,611	25,621	12,526	12,148	24,674			
15-19	12,556	12,036	24,592	12,833	12,333	25,166	12,622	12,161	24,783			
20-24	10,854	10,867	21,721	12,372	12,347	24,719	12,642	12,644	25,286			
25-29	12,840	11,957	24,797	12,302	11,901	24,203	14,157	13,782	27,939			
30-34	14,692	14,177	28,869	13,998	13,180	27,178	13,420	13,128	26,548			
35-39	16,032	15,708	31,740	15,141	14,734	29,875	14,433	13,705	28,138			
40-44	16,910	16,093	33,003	15,781	15,965	31,746	14,910	14,983	29,893			
45-49	17,422	16,720	34,142	16,898	16,138	33,036	15,777	16,024	31,801			
50-54	15,043	14,884	29,927	16,865	16,427	33,292	16,372	15,870	32,242			
55-59	12,624	12,967	25,591	14,497	14,634	29,131	16,272	16,167	32,439			
60-64	10,925	11,556	22,481	11,972	12,510	24,482	13,755	14,129	27,884			
65-69	10,845	11,807	22,652	10,251	11,106	21,357	11,237	12,023	23,260			
70-74	12,180	13,085	25,265	10,340	11,455	21,795	9,782	10,784	20,566			
75-79	12,939	13,869	26,808	11,320	12,337	23,657	9,614	10,826	20,440			
80-84	10,453	12,031	22,484	11,045	12,703	23,748	9,688	11,313	21,001			
85 and over	9,642	10,759	20,401	11,950	12,920	24,870	13,242	14,114	27,356			
65 and over	56,059	61,551	117,610	54,906	60,521	115,427	53,563	59,060	112,623			
Total	234,440	235,771	470,211	234,898	236,862	471,760	234,385	236,984	471,369			

Table 13: Projected Populations for Merrimack County by Age Groups and Sex

Merrimack County	2020			2025			2030			2035		
	Male	Female	Total									
0-4	3,496	3,553	7,049	4,165	4,029	8,194	4,187	4,049	8,236	4,110	3,976	8,086
5-9	3,936	3,896	7,832	3,641	3,800	7,441	4,330	4,298	8,628	4,349	4,322	8,671
10-14	4,284	4,067	8,351	4,081	4,036	8,117	3,768	3,926	7,694	4,478	4,443	8,921
15-19	4,779	4,740	9,519	4,511	4,395	8,906	4,315	4,356	8,671	4,023	4,259	8,282
20-24	4,923	4,581	9,504	4,711	4,611	9,322	4,481	4,326	8,807	4,316	4,297	8,613
25-29	5,069	4,666	9,735	5,492	4,581	10,073	5,274	4,606	9,880	5,042	4,291	9,333
30-34	5,080	4,698	9,778	4,450	4,825	9,275	4,889	4,716	9,605	4,657	4,748	9,405
35-39	4,935	4,693	9,628	5,373	5,033	10,406	4,620	5,167	9,787	5,137	5,046	10,183
40-44	4,475	4,430	8,905	5,257	4,817	10,074	5,750	5,177	10,927	4,888	5,326	10,214
45-49	4,696	4,611	9,307	4,525	4,457	8,982	5,317	4,836	10,153	5,814	5,203	11,017
50-54	5,156	5,349	10,505	4,617	4,658	9,275	4,441	4,491	8,932	5,221	4,876	10,097
55-59	5,764	6,311	12,075	4,980	5,301	10,281	4,452	4,605	9,057	4,278	4,443	8,721
60-64	5,778	6,138	11,916	5,662	6,231	11,893	4,886	5,223	10,109	4,365	4,540	8,905
65-69	4,755	5,255	10,010	5,600	6,086	11,686	5,483	6,164	11,647	4,731	5,180	9,911
70-74	3,736	4,212	7,948	4,607	5,185	9,792	5,428	5,995	11,423	5,309	6,077	11,386
75-79	2,311	2,713	5,024	3,535	3,990	7,525	4,360	4,891	9,251	5,135	5,651	10,786
80-84	1327	1780	3107	1,937	2,406	4,343	2,934	3,527	6,461	3,602	4,323	7,925
85 and over	1,213	2,402	3,615	1,507	2,293	3,800	2,092	2,713	4,805	3,085	3,673	6,758
65 and over	13,342	16,362	29,704	17,186	19,960	37,146	20,297	23,290	43,587	21,862	24,904	46,766
Total	75,713	78,095	153,808	78,651	80,734	159,385	81,006	83,066	164,072	82,540	84,674	167,214
Merrimack County	2040			2045			2050					
	Male	Female	Total	Male	Female	Total	Male	Female	Total			
0-4	3,989	3,859	7,848	3,911	3,783	7,694	3,959	3,829	7,788			
5-9	4,278	4,257	8,535	4,170	4,148	8,318	4,101	4,076	8,177			
10-14	4,506	4,483	8,989	4,452	4,434	8,886	4,352	4,330	8,682			
15-19	4,687	4,742	9,429	4,734	4,797	9,531	4,698	4,763	9,461			
20-24	4,082	4,232	8,314	4,651	4,635	9,286	4,703	4,689	9,392			
25-29	4,883	4,269	9,152	4,662	4,209	8,871	5,245	4,667	9,912			
30-34	4,420	4,392	8,812	4,267	4,379	8,646	4,042	4,316	8,358			
35-39	4,870	5,096	9,966	4,604	4,705	9,309	4,433	4,700	9,133			
40-44	5,486	5,209	10,695	5,201	5,284	10,485	4,909	4,865	9,774			
45-49	4,945	5,371	10,316	5,580	5,275	10,855	5,303	5,363	10,666			
50-54	5,726	5,264	10,990	4,885	5,456	10,341	5,535	5,371	10,906			
55-59	5,042	4,840	9,882	5,556	5,247	10,803	4,753	5,452	10,205			
60-64	4,202	4,395	8,597	4,976	4,809	9,785	5,500	5,225	10,725			
65-69	4,237	4,526	8,763	4,099	4,402	8,501	4,865	4,821	9,686			
70-74	4,585	5,121	9,706	4,122	4,492	8,614	3,999	4,379	8,378			
75-79	5,033	5,747	10,780	4,365	4,873	9,238	3,935	4,291	8,226			
80-84	4,243	5,011	9,254	4,183	5,120	9,303	3,648	4,354	8,002			
85 and over	3,996	4,585	8,581	4,882	5,422	10,304	5,208	5,796	11,004			
65 and over	22,094	24,990	47,084	21,651	24,309	45,960	21,655	23,641	45,296			
Total	83,210	85,399	168,609	83,300	85,470	168,770	83,188	85,287	168,475			

Table 14: Projected Populations for Rockingham County by Age Groups and Sex

Rockingham	2020			2025			2030			2035		
County	Male	Female	Total									
0-4	7,394	6,979	14,373	9,021	8,342	17,363	9,250	8,552	17,802	8,980	8,302	17,282
5-9	8,111	7,695	15,806	8,050	7,669	15,719	9,801	9,154	18,955	10,053	9,393	19,446
10-14	8,785	8,542	17,327	8,415	8,073	16,488	8,333	8,034	16,367	10,149	9,598	19,747
15-19	9,111	8,577	17,688	8,021	7,662	15,683	7,664	7,228	14,892	7,592	7,201	14,793
20-24	8,725	7,954	16,679	7,990	7,521	15,511	7,017	6,707	13,724	6,708	6,334	13,042
25-29	9,858	9,060	18,918	9,467	8,886	18,353	8,640	8,380	17,020	7,592	7,480	15,072
30-34	9,972	9,563	19,535	10,945	10,469	21,414	10,476	10,242	20,718	9,564	9,666	19,230
35-39	9,762	9,565	19,327	11,276	10,717	21,993	12,336	11,702	24,038	11,812	11,457	23,269
40-44	8,808	8,930	17,738	10,227	10,043	20,270	11,774	11,221	22,995	12,886	12,264	25,150
45-49	9,878	10,249	20,127	8,852	8,918	17,770	10,243	9,999	20,242	11,798	11,183	22,981
50-54	11,704	12,136	23,840	9,529	10,008	19,537	8,508	8,682	17,190	9,849	9,745	19,594
55-59	13,252	13,716	26,968	11,362	12,002	23,364	9,219	9,871	19,090	8,234	8,572	16,806
60-64	12,617	13,103	25,720	12,863	13,529	26,392	10,996	11,808	22,804	8,930	9,724	18,654
65-69	9,822	10,516	20,338	12,114	12,910	25,024	12,311	13,293	25,604	10,537	11,624	22,161
70-74	7,847	8,639	16,486	9,523	10,332	19,855	11,712	12,655	24,367	11,908	13,044	24,952
75-79	4,856	5,637	10,493	7,435	8,190	15,625	9,001	9,760	18,761	11,078	11,953	23,031
80-84	2740	3526	6266	4,206	5,134	9,340	6,390	7,438	13,828	7,726	8,872	16,598
85 and over	2,332	4,215	6,547	3,070	4,815	7,885	4,508	6,343	10,851	6,789	8,847	15,636
65 and over	27,597	32,533	60,130	36,348	41,381	77,729	43,922	49,489	93,411	48,038	54,340	102,378
Total	155,574	158,602	314,176	162,366	165,220	327,586	168,179	171,069	339,248	172,185	175,259	347,444
Rockingham County	2040			2045			2050					
	Male	Female	Total	Male	Female	Total	Male	Female	Total			
0-4	8,438	7,801	16,239	7,996	7,393	15,389	7,982	7,380	15,362			
5-9	9,779	9,134	18,913	9,232	8,618	17,850	8,769	8,182	16,951			
10-14	10,431	9,867	20,298	10,197	9,635	19,832	9,650	9,108	18,758			
15-19	9,268	8,621	17,889	9,580	8,907	18,487	9,391	8,717	18,108			
20-24	6,662	6,324	12,986	8,178	7,610	15,788	8,476	7,879	16,355			
25-29	7,272	7,076	14,348	7,256	7,093	14,349	8,926	8,550	17,476			
30-34	8,421	8,642	17,063	8,103	8,208	16,311	8,104	8,241	16,345			
35-39	10,804	10,832	21,636	9,556	9,722	19,278	9,216	9,250	18,466			
40-44	12,363	12,029	24,392	11,363	11,420	22,783	10,073	10,269	20,342			
45-49	12,942	12,246	25,188	12,479	12,065	24,544	11,497	11,477	22,974			
50-54	11,370	10,921	22,291	12,538	12,012	24,550	12,122	11,859	23,981			
55-59	9,553	9,639	19,192	11,087	10,850	21,937	12,258	11,958	24,216			
60-64	7,996	8,463	16,459	9,322	9,558	18,880	10,843	10,778	21,621			
65-69	8,588	9,604	18,192	7,737	8,406	16,143	9,033	9,503	18,536			
70-74	10,214	11,427	21,641	8,366	9,482	17,848	7,556	8,315	15,871			
75-79	11,289	12,342	23,631	9,732	10,870	20,602	7,990	9,050	17,040			
80-84	9,519	10,886	20,405	9,756	11,294	21,050	8,444	9,970	18,414			
85 and over	8,708	11,089	19,797	10,939	13,756	24,695	11,986	15,281	27,267			
65 and over	48,318	55,348	103,666	46,530	53,808	100,338	45,009	52,119	97,128			
Total	173,617	176,943	350,560	173,417	176,899	350,316	172,316	175,767	348,083			

Table 15: Projected Populations for Strafford County by Age Groups and Sex

Strafford County	2020			2025			2030			2035		
	Male	Female	Total									
0-4	2,994	2,862	5,856	3,688	3,449	7,137	3,876	3,626	7,502	3,949	3,694	7,643
5-9	3,380	3,077	6,457	2,883	2,901	5,784	3,534	3,480	7,014	3,720	3,668	7,388
10-14	3,472	3,304	6,776	3,321	3,055	6,376	2,819	2,867	5,686	3,460	3,448	6,908
15-19	4,861	5,451	10,312	4,503	5,185	9,688	4,380	5,005	9,385	4,029	4,887	8,916
20-24	6,587	7,270	13,857	6,922	7,667	14,589	6,413	7,221	13,634	6,246	6,931	13,177
25-29	4,989	4,414	9,403	4,829	4,336	9,165	5,230	4,757	9,987	4,600	4,273	8,873
30-34	4,532	4,129	8,661	5,311	4,774	10,085	5,114	4,666	9,780	5,558	5,150	10,708
35-39	4,007	3,932	7,939	4,503	4,090	8,593	5,273	4,715	9,988	5,080	4,619	9,699
40-44	3,538	3,510	7,048	3,878	3,817	7,695	4,345	3,954	8,299	5,103	4,581	9,684
45-49	3,674	3,696	7,370	3,396	3,496	6,892	3,708	3,784	7,492	4,164	3,931	8,095
50-54	3,992	4,214	8,206	3,527	3,612	7,139	3,245	3,401	6,646	3,547	3,691	7,238
55-59	4,501	4,737	9,238	3,808	4,097	7,905	3,348	3,495	6,843	3,083	3,299	6,382
60-64	4,353	4,447	8,800	4,324	4,632	8,956	3,645	3,990	7,635	3,211	3,415	6,626
65-69	3,341	3,710	7,051	4,191	4,392	8,583	4,147	4,553	8,700	3,506	3,938	7,444
70-74	2,606	2,956	5,562	3,144	3,550	6,694	3,930	4,185	8,115	3,893	4,351	8,244
75-79	1,721	1,995	3,716	2,440	2,762	5,202	2,934	3,296	6,230	3,674	3,889	7,563
80-84	901	1271	2172	1,397	1,761	3,158	1,957	2,424	4,381	2,349	2,899	5,248
85 and over	862	1,603	2,465	965	1,556	2,521	1,363	1,885	3,248	1,910	2,468	4,378
65 and over	9,431	11,535	20,966	12,137	14,021	26,158	14,331	16,343	30,674	15,332	17,545	32,877
Total	64,311	66,578	130,889	67,030	69,132	136,162	69,261	71,304	140,565	71,082	73,132	144,214
Strafford County	2040			2045			2050					
	Male	Female	Total	Male	Female	Total	Male	Female	Total			
0-4	3,875	3,625	7,500	3,710	3,470	7,180	3,668	3,431	7,099			
5-9	3,824	3,766	7,590	3,762	3,698	7,460	3,600	3,542	7,142			
10-14	3,674	3,663	7,337	3,786	3,763	7,549	3,723	3,697	7,420			
15-19	4,512	5,300	9,812	4,674	5,447	10,121	4,753	5,517	10,270			
20-24	5,778	6,755	12,533	6,457	7,435	13,892	6,681	7,677	14,358			
25-29	4,419	3,979	8,398	3,838	3,784	7,622	4,691	4,545	9,236			
30-34	4,906	4,638	9,544	4,717	4,306	9,023	4,074	4,088	8,162			
35-39	5,577	5,144	10,721	4,921	4,629	9,550	4,725	4,297	9,022			
40-44	4,957	4,522	9,479	5,461	5,047	10,508	4,810	4,537	9,347			
45-49	4,941	4,591	9,532	4,810	4,535	9,345	5,301	5,064	10,365			
50-54	4,019	3,865	7,884	4,781	4,516	9,297	4,653	4,464	9,117			
55-59	3,402	3,610	7,012	3,866	3,782	7,648	4,599	4,423	9,022			
60-64	2,985	3,251	6,236	3,300	3,557	6,857	3,747	3,729	7,476			
65-69	3,120	3,404	6,524	2,910	3,244	6,154	3,213	3,548	6,761			
70-74	3,321	3,794	7,115	2,962	3,281	6,243	2,761	3,128	5,889			
75-79	3,673	4,075	7,748	3,140	3,560	6,700	2,799	3,086	5,885			
80-84	2,964	3,450	6,414	2,972	3,617	6,589	2,544	3,163	5,707			
85 and over	2,411	3,023	5,434	3,050	3,596	6,646	3,260	3,897	7,157			
65 and over	15,489	17,746	33,235	15,034	17,298	32,332	14,577	16,822	31,399			
Total	72,358	74,455	146,813	73,117	75,267	148,384	73,602	75,833	149,435			

Table 16: Projected Populations for Sullivan County by Age Groups and Sex

Sullivan County	2020			2025			2030			2035		
	Male	Female	Total									
0-4	985	927	1,912	1,138	1,037	2,175	1,095	999	2,094	1,043	950	1,993
5-9	1,059	1,060	2,119	1,004	960	1,964	1,162	1,074	2,236	1,121	1,036	2,157
10-14	1,212	1,113	2,325	1,062	1,092	2,154	1,008	990	1,998	1,170	1,109	2,279
15-19	1,146	1,130	2,276	1,099	998	2,097	965	980	1,945	919	890	1,809
20-24	1,099	920	2,019	995	980	1,975	956	867	1,823	841	852	1,693
25-29	1,231	1,182	2,413	1,195	995	2,190	1,083	1,061	2,144	1,043	939	1,982
30-34	1,345	1,239	2,584	1,347	1,278	2,625	1,310	1,077	2,387	1,190	1,150	2,340
35-39	1,202	1,217	2,419	1,371	1,313	2,684	1,376	1,355	2,731	1,341	1,143	2,484
40-44	1,119	1,221	2,340	1,197	1,244	2,441	1,368	1,342	2,710	1,376	1,388	2,764
45-49	1,328	1,326	2,654	1,109	1,231	2,340	1,188	1,255	2,443	1,361	1,356	2,717
50-54	1,558	1,474	3,032	1,309	1,324	2,633	1,095	1,230	2,325	1,176	1,256	2,432
55-59	1,712	1,787	3,499	1,530	1,525	3,055	1,288	1,371	2,659	1,080	1,275	2,355
60-64	1,795	1,811	3,606	1,699	1,770	3,469	1,522	1,512	3,034	1,285	1,362	2,647
65-69	1,618	1,663	3,281	1,793	1,806	3,599	1,701	1,766	3,467	1,529	1,514	3,043
70-74	1,323	1,386	2,709	1,563	1,583	3,146	1,735	1,720	3,455	1,650	1,685	3,335
75-79	833	901	1,734	1,242	1,266	2,508	1,471	1,445	2,916	1,637	1,571	3,208
80-84	434	555	989	691	797	1,488	1,025	1,120	2,145	1,215	1,280	2,495
85 and over	368	784	1,152	502	898	1,400	763	1,154	1,917	1,144	1,552	2,696
65 and over	4,576	5,289	9,865	5,791	6,350	12,141	6,695	7,205	13,900	7,175	7,602	14,777
Total	21,367	21,696	43,063	21,846	22,097	43,943	22,111	22,318	44,429	22,121	22,308	44,429
Sullivan County	2040			2045			2050					
	Male	Female	Total	Male	Female	Total	Male	Female	Total			
0-4	993	906	1,899	956	872	1,828	943	859	1,802			
5-9	1,072	987	2,059	1,025	943	1,968	988	908	1,896			
10-14	1,134	1,071	2,205	1,089	1,022	2,111	1,042	977	2,019			
15-19	1,071	999	2,070	1,043	967	2,010	1,002	923	1,925			
20-24	806	775	1,581	944	872	1,816	920	844	1,764			
25-29	922	925	1,847	886	843	1,729	1,039	948	1,987			
30-34	1,151	1,019	2,170	1,021	1,006	2,027	982	916	1,898			
35-39	1,224	1,222	2,446	1,189	1,085	2,274	1,055	1,071	2,126			
40-44	1,348	1,173	2,521	1,235	1,256	2,491	1,200	1,115	2,315			
45-49	1,376	1,404	2,780	1,353	1,189	2,542	1,241	1,274	2,515			
50-54	1,354	1,360	2,714	1,374	1,410	2,784	1,352	1,194	2,546			
55-59	1,166	1,304	2,470	1,347	1,414	2,761	1,368	1,467	2,835			
60-64	1,084	1,269	2,353	1,174	1,300	2,474	1,357	1,410	2,767			
65-69	1,299	1,367	2,666	1,102	1,278	2,380	1,194	1,309	2,503			
70-74	1,490	1,446	2,936	1,271	1,309	2,580	1,079	1,224	2,303			
75-79	1,565	1,542	3,107	1,418	1,328	2,746	1,211	1,204	2,415			
80-84	1,358	1,394	2,752	1,305	1,371	2,676	1,185	1,181	2,366			
85 and over	1,474	1,900	3,374	1,747	2,187	3,934	1,833	2,326	4,159			
65 and over	7,186	7,649	14,835	6,843	7,473	14,316	6,502	7,244	13,746			
Total	21,887	22,063	43,950	21,479	21,652	43,131	20,991	21,150	42,141			

Appendix B
New Hampshire County Population Projections 2020 to 2050 by Municipality

Table 1: Belknap County Population Projections by Municipality

	Census	2025	2030		2035	2040	2045
Belknap County	$\mathbf{6 3 , 7 0 5}$	$\mathbf{6 6 , 3 7 1}$	$\mathbf{6 8 , 6 3 5}$	$\mathbf{6 9 , 8 7 2}$	$\mathbf{7 0 , 3 6 6}$	$\mathbf{7 0 , 3 3 8}$	$\mathbf{7 0 , 1 0 3}$
Alton town	5,894	6,141	6,350	6,465	6,510	6,508	6,486
Barnstead town	4,915	5,121	5,295	5,391	5,429	5,427	5,409
Belmont town	7,314	7,620	7,880	8,022	8,079	8,076	8,049
Center Harbor town	1,040	1,084	1,120	1,141	1,149	1,148	1,144
Gilford town	7,699	8,021	8,295	8,444	8,504	8,501	8,472
Gilmanton town	3,945	4,110	4,250	4,327	4,357	4,356	4,341
Laconia city	16,871	17,577	18,177	18,504	18,635	18,628	18,565
Meredith town	6,662	6,941	7,178	7,307	7,359	7,356	7,331
New Hampton town	2,377	2,476	2,561	2,607	2,626	2,624	2,616
Sanbornton town	3,026	3,153	3,260	3,319	3,342	3,341	3,330
Tilton town	3,962	4,128	4,269	4,346	4,376	4,375	4,360

Table 2: Carroll County Population Projections by Municipality

	2020 Census	2025	2030	2035	2040	2045	2050
Carroll County	$\mathbf{5 0 , 1 0 7}$	$\mathbf{5 2 , 2 9 3}$	$\mathbf{5 4 , 0 2 3}$	$\mathbf{5 4 , 9 3 9}$	$\mathbf{5 4 , 9 3 5}$	$\mathbf{5 4 , 2 7 3}$	$\mathbf{5 3 , 2 9 3}$
Albany town	759	792	818	832	832	822	807
Bartlett town	3,200	3,340	3,450	3,509	3,508	3,466	3,403
Brookfield town	755	788	814	828	828	818	803
Chatham town	341	356	368	374	374	369	363
Conway town	9,822	10,256	10,595	10,775	10,774	10,644	10,452
Eaton town	405	423	437	444	444	439	431
Effingham town	1,691	1,765	1,823	1,854	1,854	1,832	1,799
Freedom town	1,689	1,763	1,821	1,852	1,852	1,829	1,796
Hale's Location	132	138	142	145	145	143	140
Hart's Location town	68	71	73	75	75	74	72
Jackson town	1,028	1,073	1,108	1,127	1,127	1,113	1,093
Madison town	2,565	2,677	2,765	2,812	2,812	2,778	2,728
Moultonborough town	4,918	5,133	5,302	5,392	5,392	5,327	5,231
Ossipee town	4,372	4,563	4,714	4,794	4,793	4,735	4,650
Sandwich town	1,466	1,530	1,581	1,607	1,607	1,588	1,559
Tamworth town	2,812	2,935	3,032	3,083	3,083	3,046	2,991
Tuftonboro town	2,467	2,575	2,660	2,705	2,705	2,672	2,624
Wakefield town	5,201	5,428	5,607	5,703	5,702	5,633	5,532
Wolfeboro town	6,416	6,696	6,917	7,035	7,034	6,949	6,824

Table 3: Cheshire County Population Projections by Municipality

	2020 Census	2025	2030	2035	2040	2045	2050
Cheshire County	76,458	77,722	78,340	78,080	77,007	75,452	73,805
Alstead town	1,864	1,892	1,905	1,899	1,876	1,842	1,806
Chesterfield town	3,552	3,609	3,638	3,626	3,577	3,506	3,431
Dublin town	1,532	1,557	1,570	1,565	1,543	1,512	1,479
Fitzwilliam town	2,351	2,390	2,409	2,401	2,368	2,320	2,269
Gilsum town	752	764	771	768	757	742	726
Harrisville town	984	999	1,006	1,003	991	972	953
Hinsdale town	3,948	4,009	4,039	4,026	3,974	3,900	3,820
Jaffrey town	5,320	5,404	5,444	5,427	5,356	5,254	5,145
Keene city	23,047	23,424	23,608	23,530	23,211	22,747	22,257
Marlborough town	2,096	2,131	2,148	2,140	2,111	2,068	2,023
Marlow town	749	761	767	765	754	739	723
Nelson town	629	639	644	642	634	621	607
Richmond town	1,197	1,217	1,226	1,222	1,206	1,181	1,155
Rindge town	6,476	6,589	6,645	6,621	6,525	6,386	6,238
Roxbury town	220	224	225	225	222	217	212
Stoddard town	1,374	1,397	1,408	1,403	1,384	1,356	1,326
Sullivan town	658	668	672	670	662	650	638
Surry town	820	834	840	837	826	809	792
Swanzey town	7,270	7,409	7,477	7,449	7,330	7,159	6,978
Troy town	2,130	2,165	2,182	2,175	2,145	2,102	2,056
Walpole town	3,633	3,692	3,721	3,708	3,659	3,586	3,510
Westmoreland town	1,706	1,732	1,745	1,740	1,717	1,685	1,651
Winchester town	4,150	4,217	4,249	4,236	4,179	4,097	4,010

Table 4: Coos County Population Projections by Municipality

	2020 Census	2025	2030	2035	2040	2045	2050
Coos County	31,268	31,274	31,047	30,490	29,608	28,533	27,428
Atkinson and Gilmanton Academy grant	0	0	0	0	0	0	0
Beans grant	0	0	0	0	0	0	0
Beans purchase	0	0	0	0	0	0	0
Berlin city	9,425	9,427	9,358	9,190	8,925	8,601	8,268
Cambridge township	16	16	16	16	15	15	14
Carroll town	820	820	814	800	776	748	719
Chandlers purchase	0	0	0	0	0	0	0
Clarksville town	294	294	292	287	278	268	258
Colebrook town	2,084	2,084	2,069	2,032	1,973	1,902	1,828
Columbia town	659	659	654	643	624	601	578
Crawfords purchase	0	0	0	0	0	0	0

	2020 Census	2025	2030	2035	2040	2045	2050
Cutts grant	0	0	0	0	0	0	0
Dalton town	933	933	926	910	883	851	818
Dixs grant	0	0	0	0	0	0	0
Dixville township	4	4	4	4	4	4	4
Dummer town	306	306	304	298	290	279	268
Errol town	298	298	296	291	282	272	261
Ervings location	0	0	0	0	0	0	0
Gorham town	2,698	2,699	2,679	2,631	2,555	2,462	2,367
Greens grant	0	0	0	0	0	0	0
Hadleys purchase	0	0	0	0	0	0	0
Jefferson town	1,043	1,043	1,036	1,017	988	952	915
Kilkenny township	0	0	0	0	0	0	0
Lancaster town	3,218	3,219	3,195	3,138	3,047	2,937	2,823
Low and Burbanks grant	0	0	0	0	0	0	0
Martins location	2	2	2	2	2	2	2
Milan town	1,358	1,358	1,348	1,324	1,286	1,239	1,191
Millsfield township	25	25	25	24	24	23	22
Northumberland town	2,126	2,126	2,111	2,073	2,013	1,940	1,865
Odell township	1	1	1	1	1	1	1
Pinkhams grant	0	0	0	0	0	0	0
Pittsburg town	800	800	794	780	758	730	702
Randolph town	328	328	326	320	311	299	288
Sargents purchase	1	1	1	1	1	1	1
Second College grant	0	0	0	0	0	0	0
Shelburne town	353	353	351	344	334	322	310
Stark town	478	478	475	466	453	436	419
Stewartstown town	813	813	807	793	770	742	713
Stratford town	662	662	657	646	627	604	581
Success township	4	4	4	4	4	4	4
Thompson and Meserves purchase	1	1	1	1	1	1	1
Wentworth location	28	28	28	27	27	26	25
Whitefield town	2,490	2,490	2,472	2,428	2,358	2,272	2,184

Table 5: Grafton County Population Projections by Municipality

	$\begin{gathered} 2020 \\ \text { Census } \end{gathered}$	2025	2030	2035	2040	2045	2050
Grafton County	91,118	94,984	98,030	99,463	99,711	98,998	97,777
Alexandria town	1,776	1,851	1,911	1,939	1,943	1,930	1,906
Ashland town	1,938	2,020	2,085	2,115	2,121	2,106	2,080
Bath town	1,077	1,123	1,159	1,176	1,179	1,170	1,156
Benton town	374	390	402	408	409	406	401
Bethlehem town	2,484	2,589	2,672	2,711	2,718	2,699	2,666
Bridgewater town	1,160	1,209	1,248	1,266	1,269	1,260	1,245
Bristol town	3,244	3,382	3,490	3,541	3,550	3,525	3,481
Campton town	3,343	3,485	3,597	3,649	3,658	3,632	3,587
Canaan town	3,794	3,955	4,082	4,141	4,152	4,122	4,071
Dorchester town	339	353	365	370	371	368	364
Easton town	292	304	314	319	320	317	313
Ellsworth town	93	97	100	102	102	101	100
Enfield town	4,465	4,654	4,804	4,874	4,886	4,851	4,791
Franconia town	1,083	1,129	1,165	1,182	1,185	1,177	1,162
Grafton town	1,385	1,444	1,490	1,512	1,516	1,505	1,486
Groton town	569	593	612	621	623	618	611
Hanover town	11,870	12,374	12,770	12,957	12,989	12,897	12,737
Haverhill town	4,585	4,780	4,933	5,005	5,017	4,982	4,920
Hebron town	632	659	680	690	692	687	678
Holderness town	2,004	2,089	2,156	2,188	2,193	2,177	2,150
Landaff town	446	465	480	487	488	485	479
Lebanon city	14,282	14,888	15,365	15,590	15,629	15,517	15,326
Lincoln town	1,631	1,700	1,755	1,780	1,785	1,772	1,750
Lisbon town	1,621	1,690	1,744	1,769	1,774	1,761	1,739
Littleton town	6,005	6,260	6,461	6,555	6,571	6,524	6,444
Livermore town	2	2	2	2	2	2	2
Lyman town	585	610	629	639	640	636	628
Lyme town	1,745	1,819	1,877	1,905	1,910	1,896	1,873
Monroe town	864	901	930	943	945	939	927
Orange town	277	289	298	302	303	301	297
Orford town	1,237	1,289	1,331	1,350	1,354	1,344	1,327
Piermont town	769	802	827	839	842	836	825
Plymouth town	6,682	6,966	7,189	7,294	7,312	7,260	7,170
Rumney town	1,498	1,562	1,612	1,635	1,639	1,628	1,607
Sugar Hill town	647	674	696	706	708	703	694
Thornton town	2,708	2,823	2,913	2,956	2,963	2,942	2,906
Warren town	825	860	888	901	903	896	885
Waterville Valley town	508	530	547	555	556	552	545
Wentworth town	845	881	909	922	925	918	907
Woodstock town	1,434	1,495	1,543	1,565	1,569	1,558	1,539

Table 6: Hillsborough County Population Projections by Municipality

	$\begin{gathered} 2020 \\ \text { Census } \\ \hline \end{gathered}$	2025	2030	2035	2040	2045	2050
Hillsborough County	422,937	440,881	454,896	464,900	470,211	471,760	471,369
Amherst town	11,753	12,243	12,625	12,898	13,043	13,085	13,075
Antrim town	2,651	2,763	2,851	2,914	2,947	2,957	2,955
Bedford town	23,322	24,347	25,152	25,726	26,031	26,120	26,097
Bennington town	1,501	1,565	1,614	1,650	1,669	1,674	1,673
Brookline town	5,639	5,851	6,017	6,136	6,198	6,217	6,212
Deering town	1,904	1,985	2,048	2,093	2,117	2,124	2,122
Francestown town	1,610	1,678	1,732	1,770	1,790	1,796	1,794
Goffstown town	18,577	19,406	20,055	20,519	20,764	20,836	20,818
Greenfield town	1,716	1,789	1,846	1,886	1,908	1,914	1,913
Greenville town	1,974	2,040	2,091	2,128	2,147	2,153	2,152
Hancock town	1,731	1,795	1,846	1,882	1,901	1,906	1,905
Hillsborough town	5,939	6,186	6,373	6,507	6,579	6,599	6,594
Hollis town	8,342	8,678	8,940	9,128	9,227	9,256	9,249
Hudson town	25,394	26,471	27,313	27,914	28,232	28,325	28,302
Litchfield town	8,478	8,838	9,119	9,319	9,426	9,457	9,449
Lyndeborough town	1,702	1,774	1,831	1,871	1,892	1,898	1,897
Manchester city	115,644	120,730	124,702	127,538	129,043	129,482	129,371
Mason town	1,448	1,509	1,557	1,592	1,610	1,615	1,614
Merrimack town	26,632	27,726	28,581	29,190	29,514	29,609	29,585
Milford town	16,131	16,780	17,286	17,648	17,840	17,895	17,881
Mont Vernon town	2,584	2,694	2,779	2,840	2,873	2,882	2,880
Nashua city	91,322	95,161	98,159	100,299	101,435	101,766	101,683
New Boston town	6,108	6,349	6,538	6,672	6,743	6,764	6,759
New Ipswich town	5,204	5,434	5,613	5,741	5,809	5,829	5,824
Pelham town	14,222	14,790	15,233	15,549	15,717	15,766	15,754
Peterborough town	6,418	6,690	6,903	7,055	7,135	7,159	7,153
Sharon town	359	374	386	395	399	400	400
Temple town	1,382	1,441	1,486	1,519	1,536	1,542	1,540
Weare town	9,092	9,460	9,747	9,952	10,061	10,093	10,085
Wilton town	3,896	4,061	4,190	4,283	4,331	4,346	4,342
Windsor town	262	273	282	288	291	292	292

Table 7: Merrimack County Population Projections by Municipality

	$\begin{gathered} 2020 \\ \text { Census } \end{gathered}$	2025	2030	2035	2040	2045	2050
Merrimack County	153,808	159,385	164,072	167,214	168,609	168,770	168,475
Allenstown town	4,707	4,883	5,031	5,131	5,175	5,180	5,171
Andover town	2,406	2,493	2,567	2,616	2,638	2,640	2,635
Boscawen town	3,998	4,143	4,265	4,346	4,383	4,387	4,379
Bow town	8,229	8,530	8,783	8,953	9,028	9,037	9,021
Bradford town	1,662	1,722	1,773	1,807	1,822	1,824	1,820
Canterbury town	2,389	2,473	2,543	2,591	2,611	2,614	2,609
Chichester town	2,665	2,759	2,838	2,891	2,914	2,917	2,912
Concord city	43,976	45,611	46,986	47,907	48,316	48,363	48,277
Danbury town	1,250	1,293	1,328	1,352	1,363	1,364	1,362
Dunbarton town	3,005	3,108	3,195	3,254	3,279	3,282	3,277
Epsom town	4,834	5,006	5,151	5,249	5,292	5,297	5,288
Franklin city	8,741	9,055	9,319	9,496	9,575	9,584	9,567
Henniker town	6,185	6,393	6,567	6,684	6,736	6,742	6,731
Hill town	1,017	1,054	1,085	1,106	1,115	1,116	1,114
Hooksett town	14,871	15,430	15,899	16,214	16,354	16,370	16,340
Hopkinton town	5,914	6,128	6,309	6,429	6,483	6,489	6,478
Loudon town	5,576	5,767	5,928	6,035	6,083	6,088	6,078
Newbury town	2,172	2,253	2,321	2,367	2,387	2,389	2,385
New London town	4,400	4,554	4,683	4,770	4,809	4,813	4,805
Northfield town	4,872	5,049	5,197	5,297	5,341	5,346	5,337
Pembroke town	7,207	7,463	7,678	7,822	7,886	7,893	7,880
Pittsfield town	4,075	4,220	4,342	4,423	4,460	4,464	4,456
Salisbury town	1,422	1,472	1,515	1,543	1,556	1,557	1,555
Sutton town	1,978	2,047	2,105	2,144	2,161	2,163	2,159
Warner town	2,937	3,043	3,133	3,193	3,220	3,223	3,217
Webster town	1,913	1,980	2,036	2,073	2,090	2,092	2,088
Wilmot town	1,407	1,455	1,496	1,523	1,535	1,536	1,534

Table 8: Rockingham County Population Projections by Municipality

	$\begin{gathered} 2020 \\ \text { Census } \end{gathered}$	2025	2030	2035	2040	2045	2050
Rockingham County	314,176	327,586	339,248	347,444	350,560	350,316	348,082
Atkinson town	7,087	7,389	7,653	7,837	7,908	7,902	7,852
Auburn town	5,946	6,190	6,403	6,552	6,609	6,605	6,564
Brentwood town	4,490	4,668	4,823	4,932	4,974	4,970	4,941
Candia town	4,013	4,184	4,333	4,438	4,478	4,475	4,446
Chester town	5,232	5,442	5,624	5,753	5,802	5,798	5,763
Danville town	4,408	4,596	4,760	4,875	4,918	4,915	4,884
Deerfield town	4,855	5,056	5,230	5,352	5,399	5,395	5,362
Derry town	34,317	35,876	37,231	38,184	38,546	38,518	38,258
East Kingston town	2,441	2,538	2,623	2,683	2,705	2,704	2,687
Epping town	7,125	7,420	7,676	7,856	7,925	7,919	7,870
Exeter town	16,049	16,734	17,330	17,748	17,908	17,895	17,781
Fremont town	4,739	4,932	5,100	5,218	5,262	5,259	5,227
Greenland town	4,067	4,231	4,374	4,474	4,513	4,510	4,482
Hampstead town	8,998	9,382	9,716	9,951	10,040	10,033	9,969
Hampton town	16,214	16,906	17,508	17,931	18,092	18,079	17,964
Hampton Falls town	2,403	2,499	2,582	2,641	2,663	2,661	2,645
Kensington town	2,095	2,184	2,262	2,317	2,338	2,336	2,321
Kingston town	6,202	6,467	6,697	6,859	6,920	6,915	6,871
Londonderry town	25,826	26,955	27,937	28,627	28,890	28,869	28,681
New Castle town	1,000	1,043	1,080	1,106	1,116	1,115	1,108
Newfields town	1,769	1,845	1,910	1,956	1,974	1,972	1,960
Newington town	811	846	876	897	905	904	899
Newmarket town	9,430	9,833	10,183	10,429	10,522	10,515	10,448
Newton town	4,820	5,026	5,205	5,330	5,378	5,374	5,340
North Hampton town	4,538	4,732	4,900	5,019	5,064	5,060	5,028
Northwood town	4,641	4,830	4,994	5,109	5,153	5,150	5,118
Nottingham town	5,229	5,439	5,621	5,749	5,798	5,794	5,759
Plaistow town	7,830	8,164	8,455	8,659	8,737	8,731	8,675
Portsmouth city	21,956	22,893	23,708	24,281	24,499	24,482	24,326
Raymond town	10,684	11,133	11,524	11,799	11,903	11,895	11,820
Rye town	5,543	5,780	5,985	6,130	6,185	6,181	6,141
Salem town	30,089	31,460	32,653	33,491	33,810	33,785	33,557
Sandown town	6,548	6,814	7,045	7,208	7,270	7,265	7,221
Seabrook town	8,401	8,753	9,059	9,274	9,356	9,349	9,291
South Hampton town	894	932	965	989	998	997	990
Stratham town	7,669	7,990	8,268	8,464	8,539	8,533	8,480
Windham town	15,817	16,425	16,954	17,326	17,467	17,456	17,354

Table 9: Strafford County Population Projections by Municipality

	Census	2025	2030	2035	2040	2045	2050
Strafford County	$\mathbf{1 3 0 , 8 8 9}$	$\mathbf{1 3 6 , 1 6 2}$	$\mathbf{1 4 0 , 5 6 5}$	$\mathbf{1 4 4 , 2 1 4}$	$\mathbf{1 4 6 , 8 1 3}$	$\mathbf{1 4 8 , 3 8 4}$	$\mathbf{1 4 9 , 4 3 5}$
Barrington town	9,326	9,702	10,015	10,275	10,461	10,573	10,647
Dover city	32,741	34,076	35,190	36,114	36,772	37,170	37,436
Durham town	15,490	16,114	16,635	17,067	17,375	17,560	17,685
Farmington town	6,722	6,988	7,209	7,393	7,524	7,603	7,656
Lee town	4,520	4,697	4,844	4,967	5,054	5,107	5,142
Madbury town	1,918	1,995	2,060	2,113	2,151	2,174	2,190
Middleton town	1,823	1,891	1,948	1,995	2,029	2,049	2,063
Milton town	4,482	4,657	4,804	4,925	5,011	5,064	5,099
New Durham town	2,693	2,796	2,882	2,954	3,005	3,035	3,056
Rochester city	32,492	33,801	34,894	35,800	36,445	36,835	37,096
Rollinsford town	2,597	2,696	2,779	2,848	2,897	2,927	2,946
Somersworth city	11,855	12,348	12,760	13,102	13,345	13,492	13,590
Strafford town	4,230	4,400	4,543	4,661	4,745	4,795	4,829

Table 10: Sullivan County Population Projections by Municipality

	Census	2020	2030	2035	2040	2045	2050
Sullivan County	$\mathbf{4 3 , 0 6 3}$	$\mathbf{4 3 , 9 4 3}$	$\mathbf{4 4 , 4 2 9}$	$\mathbf{4 4 , 4 2 9}$	$\mathbf{4 3 , 9 5 0}$	$\mathbf{4 3 , 1 3 1}$	$\mathbf{4 2 , 1 4 1}$
Acworth town	853	870	880	880	871	854	835
Charlestown town	4,806	4,904	4,958	4,958	4,905	4,814	4,703
Claremont city	12,949	13,214	13,360	13,360	13,216	12,969	12,672
Cornish town	1,616	1,649	1,667	1,667	1,649	1,619	1,581
Croydon town	801	817	826	826	817	802	784
Goshen town	796	812	821	821	812	797	779
Grantham town	3,404	3,474	3,512	3,512	3,474	3,409	3,331
Langdon town	651	664	672	672	664	652	637
Lempster town	1,118	1,141	1,153	1,153	1,141	1,120	1,094
Newport town	6,299	6,428	6,499	6,499	6,429	6,309	6,164
Plainfield town	2,459	2,509	2,537	2,537	2,510	2,463	2,406
Springfield town	1,259	1,285	1,299	1,299	1,285	1,261	1,232
Sunapee town	3,342	3,410	3,448	3,448	3,411	3,347	3,270
Unity town	1,518	1,549	1,566	1,566	1,549	1,520	1,485
Washington town	1,192	1,216	1,230	1,230	1,217	1,194	1,166

[^0]: ${ }^{1}$ U.S. Census Bureau, "Methodology for the Subcounty Total Resident Population Estimates (Vintage 2019): April 1, 2010 to July 1, 2019", https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2010-2019/2019-su-meth.pdf

[^1]: ${ }^{2}$ U.S. Social Security Administration, Office of the Actuary, Actuarial Study No. 12. https://www.ssa.gov/oact/NOTES/as120/LifeTables Body.html\#wp1169453

[^2]: ${ }^{3}$ https://www.govinfo.gov/content/pkg/FR-1997-10-30/pdf/97-28653.pdf

