

Discovery Meeting Merrimack Watershed

July 7, 2015 – Manchester, New Hampshire

July 7, 2015 - Concord, New Hampshire

July 8, 2015 - Haverhill, Massachusetts

Introductions

- Risk MAP Project Team
- City and County partners and officials
- State partners and officials
- Other Federal Agencies partner representatives
- Associations
- Others

Need for Updates

- Known discrepancies in current FISs
- Additional problems
 - Out-of-date hydrology
 - Re-calculation of 10-, 50-, 100-, and 500-year peakflow annual exceedance probabilities (AEPs) needed, due to additional 35+ years of streamflow data and recent large events
 - Working to identify discrepancies in current FISs with data from the spring 2010 (MA) and spring 2006 and spring 2007 (NH) floods
 - Will compare how HWMs plot on FIS profiles and on USGS streamgage statistics
 - Very different AEPs will indicate problems in effective hydraulic models used to build profiles

Need for Updates

Additional problems (continued)

- Clusters of Letters of Map Change (LOMCs) indicating inaccuracies in the effective floodplains
- In nearby watersheds, First Order Approximation (FOA) has indicated that many effective A Zones may be inaccurately mapped and/or may be based on outdated engineering

First Order Approximation

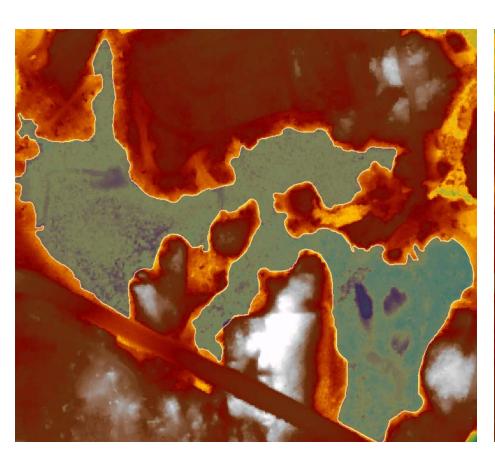
Goal:

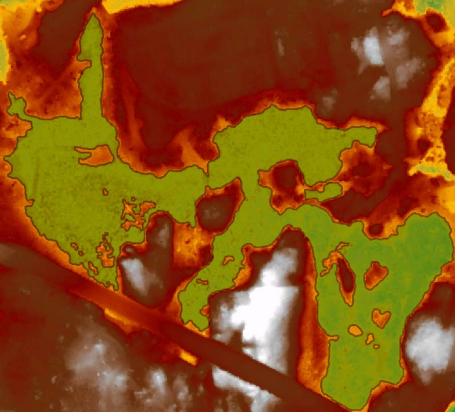
- Perform approximate engineering analysis using modern data and tools
- Compare effective Zone A to new one using a formula to determine pass/fail

Results:

- 311 zones in Merrimack study area
- Analysis has begun
- Results from nearby watershed (Charles): only 85% of zones pass with generous vertical tolerance; only 4% of zones pass without tolerance

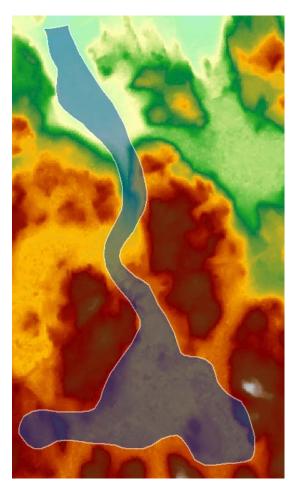
Likely conclusion:

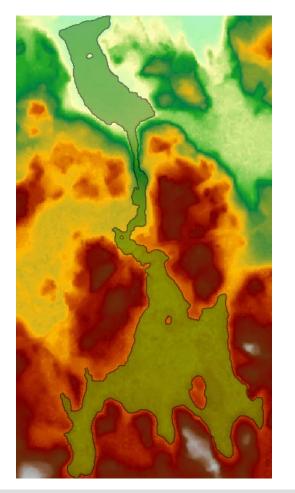

A Zones in Merrimack study area are not in good shape



First Order Approximation

FOA Results Similar to Effective:





First Order Approximation

FOA Results Much Better than Effective:

Why are we here?

Risk Mapping, Assessment and Planning (RiskMAP): What is different?

- FY2015 FY2019?
- Mitigation Planning Status update
- 4-Meeting Format
 - Discovery meeting today
- Study approach Watershed based

Best Available Data

Community data available?

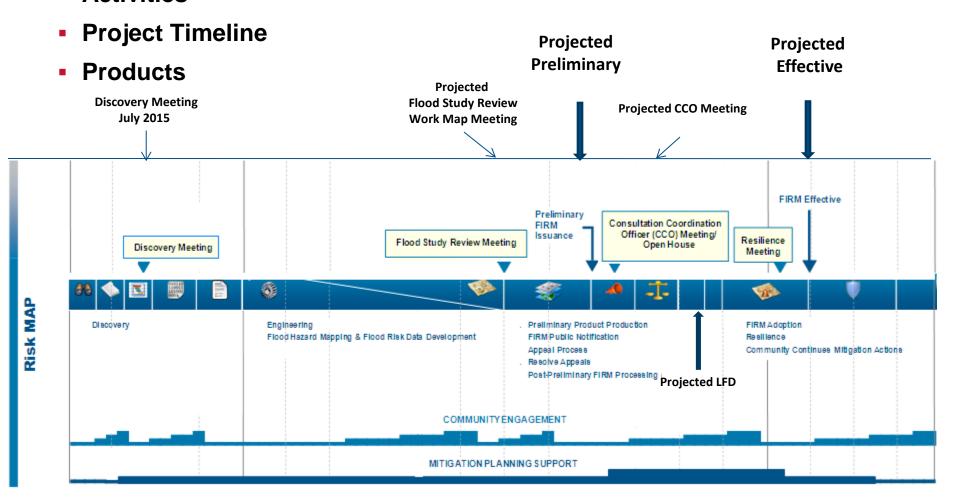
Discovery

Discovery for the Merrimack Watershed is the process of data mining, collection, and analysis with the goal of conducting a comprehensive watershed study and initiating communication and mitigation planning discussions with the communities in the watershed.

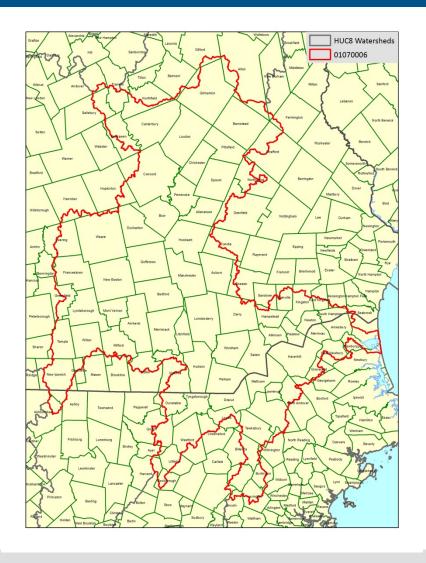
Occurs prior to...

- Flood studies
- Flood risk assessments
- Mitigation planning technical assistance projects

Involvement from Communities


- Four meetings during the study when involvement from communities are needed:
 - Discovery meeting
 - Work Map meeting
 - CCO meeting (Community Coordination and Outreach)
 - Open House/Resiliency meeting

Merrimack Watershed Timeline


Activities

Merrimack Watershed

Watershed Communities

- The Merrimack Watershed contains or touches:
 - 2 states (MA and NH)
 - 8 counties
 - 110 towns & cities
 - 3,724 total stream miles
 - Around 1.5 million residents

Merrimack Watershed Rivers

- Merrimack River
- Soucook River
- Suncook River
- Little Suncook River
- Piscataquog River
- Souhegan River
- Spicket River
- Shawsheen River
- Little River
- Other smaller rivers and tributaries

Priority Stream Reaches

- One goal of Discovery: Coordinate with all watershed stakeholders to select highestpriority reaches for redelineation and/or detailed study
- Priority list then used to set scope of revision
 - Communities having DFIRM panels revised
 - Communities not having DFIRM panels revised
- Coastal areas done by other studies

Discovery Report

- Priority reaches will be selected based on analysis of seven sources
 - CNMS
 - LOMCs
 - Hydrology comparisons
 - HWM comparisons
 - FOA
 - State NFIP Coordinator's annual report
 - NFIP claims
- See FOA Report, Discovery Report, and Discovery Map for details
 - All available in digital format upon request
- Last source required to finalize priority list:
- STAKEHOLDER INPUT NEEDED! Please tell us your mapping needs.
 - Online questionnaire
 - Breakout session today

Best Available Data

- LiDAR (<u>Light Detection And Ranging</u>) elevation data available for entire study area
- U.S. Geological Survey (USGS) regional regression equations for estimating peakflows for selected annual exceedance probabilities (will be) published in spring/summer 2015 (MA) and 2008 (NH)
- Existing Digital Flood Insurance Rate Maps (DFIRMs)
 - Essex County, MA effective in July 2014
 - Middlesex County, MA effective in July 2014
 - Worcester County, MA effective in July 2014
 - Belknap County, NH DFIRMs non-existent
 - Hillsborough County, NH effective in September 2009
 - Merrimack County, NH effective in April 2010
 - Rockingham County, NH effective in May 2005
 - Strafford County, NH effective in May 2005

- Zone AE: Redelineation
- Zone A: Approximate Study
- Zone AE: Limited Detail Study
- Zone AE: Detail Study

ZONE AE: Redelineation

- No new engineering analysis
- Acceptable when effective Detailed Study Base Flood Elevations (BFEs) are considered accurate – Appeal Eligible
- Effective model data is transferred to new LiDAR terrain data to create new floodplain delineations
- Digital Flood Insurance Rate Map (DFIRM) / Flood Insurance Study (FIS) Data: Same as Detailed Study

ZONE A: Approximate Study

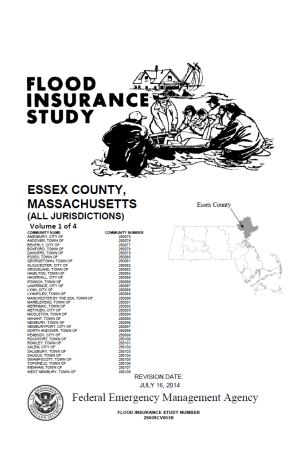
- Hydrologic and Hydraulic modeling analysis based on new terrain data.
- Streamgage data or regression equations for hydrology and HEC-RAS modeling used for hydraulics
- No field survey
- Cross-section values derived from new lidar terrain data
- Provides an approximate delineation for the 1% annual exceedance probability (100-yr flood) event.
- No BFEs are provided Appeal Eligible

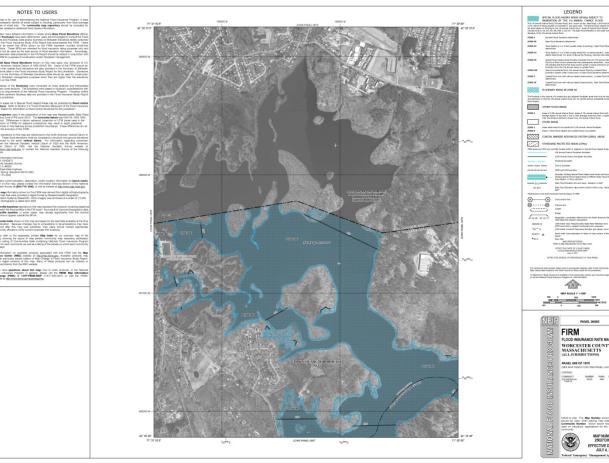
ZONE AE: Limited Detail Study

- Hydrologic and Hydraulic modeling analysis based on new terrain data
- Streamgage data or regression equations for hydrology and HEC-RAS modeling used for hydraulics
- Basic field survey
- Cross-section values derived from new Light Detection And Ranging (lidar) terrain data
- Provides an approximate delineation and Base Flood Elevations (BFE) for the 1% annual exceedance probability (100-yr flood) event – Appeal Eligible

ZONE AE: Detailed Study

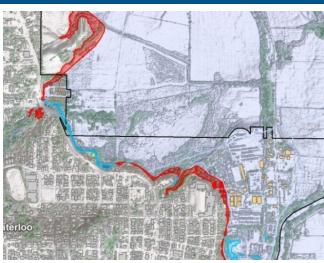
- Most Detailed and most expensive study
- Structures and cross-sections are field surveyed
- Streamgage data or regression equations for hydrology and HEC-RAS modeling used for hydraulics
- Floodway Data Table and Flood Profiles included in Flood Insurance Study (FIS)
- Provides:
 - BFEs Appeal Eligible
 - Cross Sections
 - Floodway


- 1% annual exceedance probability(100-yr flood) floodplain
- 0.2% annual exceedance probability (500-yr flood) floodplain



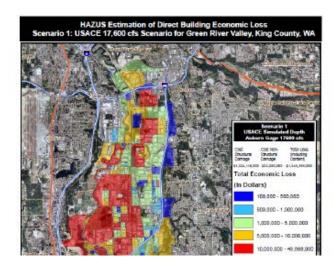
Digital Flood Insurance Rate Maps / Flood Insurance Study

FIS Reports and DFIRM Maps will continue to fulfill regulatory requirements and support the NFIP



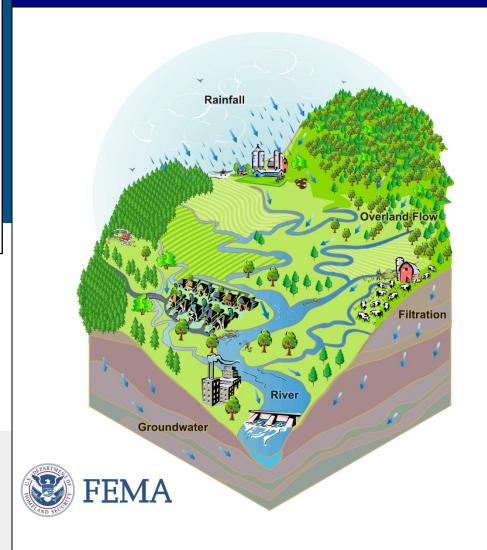
Flood Risk Products

Changes Since Last Map


- Shows areas of change
- Improved outreach

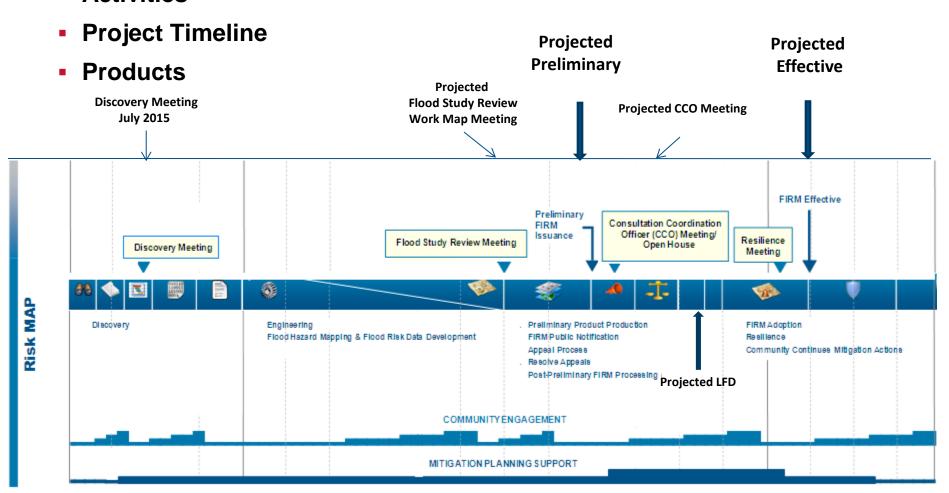
HAZUS Risk Assessment & National Flood Risk Layer

Enables communities to understand risk by reference to existing structure loss



Watershed Flood Risk Report

- Changes Since Last Map
- HAZUS Risk Assessment



Merrimack Watershed Flood Risk Report

Merrimack Watershed Timeline

Activities

Discover the Watershed Communities

Understand local interest, issues, capabilities of communities

- Status of Mitigation Plan
- Communication desire, skills, resources
- Interest in and resources for mitigation
- Experience with flood disasters and recovery
- Floodplain administration
- Interest in cost-share
- Mitigation support needs and interests

Discover FEMA Programs

- Flood Mitigation Assistance annual funding to reduce risk to NFIPinsured structures
- Hazard Mitigation Grant Program declared disaster funding for longterm hazard mitigation measures
- Pre-Disaster Mitigation Program annual funding for hazard mitigation planning and implementation
- Repetitive Flood Claims annual funding to reduce risk to NFIP-insured structures with one or more claims
- Severe Repetitive Loss annual funding to reduce risk to NFIP-insured severe repetitive loss structures
- Community Rating System proactive communities receive insurance discounts for residents
- National Dam Safety Program dam safety standards

Merrimack Watershed

Hazard Mitigation Plan Status

Please see handout

Points of Contact Charles Watershed

MA State Contacts

 Eric Carlson, State Hazard Mitigation Officer/NFIP Coordinator, MA DCR

Eric.Carlson@state.ma.us

NH State Contacts

 Jennifer Gilbert, State NFIP Coordinator, NH OEP

Jennifer.Gilbert@nh.gov

FEMA Regional Service Center

 Alex Sirotek, RSC Lead, Compass PTS <u>sirotekar@cdmsmith.com</u>

USGS Contacts

 Scott Olson, Project Manager, USGS solson@usgs.gov

 Greg Stewart, Project Manager, USGS gstewart@usgs.gov

FEMA Contacts

 Kerry Bogdan, Project Manager and Senior Engineer, FEMA Region I

Kerry.Bogdan@dhs.gov

Marilyn Hilliard, Chief
 Risk Analysis Branch, Mitigation Division,
 FEMA Region I

Marilyn.Hilliard@dhs.gov

General Points of Contact

- For general FEMA mapping and Letter of Map Change (LOMC) questions contact FEMA's Map Information Exchange (FMIX): 1-877-FEMA MAP (1-877-336-2627) or email a Map Specialist:
 FEMAMapSpecialist@riskmapcds.com
- Map Service Center (MSC): where you can view effective maps online for free http://www.msc.fema.gov/
- To learn more about the National Flood Insurance Program (NFIP): http://www.floodsmart.gov/floodsmart/ or call 1-888-379-9531

Data Request

- Disaster High Water Marks (HWM)
- Existing/new dams or levees
- New construction of culverts and bridges
- Planimetric Data (i.e. Building Footprints)
- •Information obtained from research by other Federal agencies, non-profit organizations, Universities, etc.
- Information from dam Emergency Action Plans
- Much more anything affecting the floodplain

Optional Breakout Session

Optional Breakout Session for community specific questions

(5-30 minutes):

To discuss Study Areas and Data Availability on a Community and Watershed Basis

QUESTIONS??

