Today's Speakers

 Stephen Roy, P.G., NH DES Drinking Water & Groundwater Bureau

(603) 271-0660, <u>stephen.roy@des.nh.gov</u>

- Robert Tardif, P.E., NH DES Subsurface Systems Bureau (603) 271-2904, <u>robert.a.tardif@des.nh.gov</u>
- Randall Arendt, F.R.T.P.I., ASLA (Hon).
 (207) 406-4242, rgarendt@comcast.net

2022 OPD Spring Planning & Zoning Conference

Spring Planning & Zoning Conference 2022

Private and Public Well Siting Standards

Stephen Roy, P.G. NHDES, Drinking Water and Groundwater Bureau

Stephen.Roy@des.nh.gov

Where Does NH get its Drinking Water?

From: The New Hampshire Water Resources Primer, 2008

Private Wells in NH

Bedrock Water Supply Well Basics:

- Casing installed into competent rock
- Option to grout between casing and ground
- Water flow through fractures
- Submersible pumps

NH Water Well Construction Standards

NH State Water Well Board

- Driller and Pump Installer Licensing Authority
- Establishes well construction and pump installation and materials standards
- Establishes well siting standards
- > Well Completion Reports
- Consumer Protection

Private Well Setbacks

- Well Siting needs to align with SSB approval
- Frequent site feature conflicts
- Small lots, steep slopes, surface water, etc.
- Reductions are <u>conditionally</u> allowed

	RESIDENTIAL DRINKING WATER WELL LOCATION				
SETBACKS					
	Entity	Setback (feet)			
	Effluent Disposal Area	751			
	(leach field/bed)	75-			
	Septic Tank	75 ²			
	Property Boundary	75			
ĺ	Livestock Pen	75 (100 for dug			
		wells)			
	Automobile Salvage Yard	75			
	Underground Storage Tanks	250			
	(containing gasoline fuel)	250			
	Storage of Regulated				
	Substance	75			
	(except gasoline fuel)				
	Solid Waste Disposal Site	75			
	Bulk Storage of Material	75			
	(ex. fertilizer, manure, salt)	/5			
	Stump Dump	75 ³			
	State Highway Right-of-Way	50 ⁴			
	Sewer Component	50 ⁵			
	Surface Water / Swamp	50 ⁶			
ſ	Public Road Surface	75 ⁷			
	Other Sources of	75			
	Contamination	75			
-					

Protective Well Radius

RSA 485-A:30-b

Non-conforming locations

- Driller, SSB designer and owner consult when well cannot be located per site plan to choose alternate location
- Approved plan requires amendment
- Special methods of construction required
- Requires setback reduction form

Table 602-1Horizontal Setbacks and Minimum Casing Length

Horizontal Setback [Ft]	Required Minimum		
	Casing Length [Ft]		

75 or greater	20
70 to 74	27
65 to 69	37
60 to 64	45
55 to 59	51
50 to 54	56
45 to 49	60
40 to 44	63
35 to 39	66
30 to 34	69
25 to 29	71

Overlapping Well Radii

- Allowed but not encouraged
- Identified on SSB application
- Requires standard release form

Private Well Testing

- No State Requirements
- Suggestion only
- State support for some (VOCs – PFAS)
- Treatment Guidance

	Testing Frequency			
Standard Analysis Arsenic Bacteria Chloride Copper Fluoride Hardness Iron Lead Manganese Nitrate/Nitrite pH Sodium Uranium	Every 3 to 5 years (except for bacteria and nitrate, which are recommended yearly)			
Radiological Analysis Radon Uranium Analytical Gross Alpha	Every 3 to 5 years			
PFAS	Every 3 to 5 years			
VOCs	Every 3 to 5 years			

Contaminants and Testing Frequency

The NHDES Be *Well* Informed Guide

PROTECT YOUR FAMILY'S HEALTH AND HOME

INFORMATION AND GUIDANCE FOR TREATING YOUR WELL WATER

	Units	
Lead (Pb)	mg/L	•
Lead, Stagnant (Pb)	mg/L	•
Manganese (Mn)	mg/L	•
Nitrate-N	mg/L	•
Nitrite-N	mg/L	•
рН	units	•
Sodium (Na)	mg/L	•

https://www4.des.state.nh.us/DWITool/

Community Wells in NH

Community Water System (CWS): A public water system that supplies water to the same population (25 or more people or 15 or more service connections) year-round.

- Requirements for Community Water Systems are established by both the state and federal <u>Safe Drinking Water Act</u>
- CWS Source and Design Requirements established by:
- Env-Dw 302/305 : Large/Small Production Wells for Small Community Water Systems
- Env-Dw 404/405 : Design Standards for Large/Small Public Water Systems

Small Community Water System = population less than 1,000 Large Community Water System = population greater than 1,000

Community Well location and protective radius criteria

Well location and Sanitary Protective Area (SPA) radii must be:

- On land that's fully owned or controlled (via easement) by the CWS owner, no overlap onto abutting property unless cons. land
- Fully maintained in its natural state with no changes other than well
- Have no structures other than water supply related
- Receive no discharge from drainage features for stormwater or runoff
- Have no utilities other than those needed for well and water system

Radius of SPA based on the required production volume per the size of CWS

Example:	Table 302-1 Sanitary Protective Area Radii		
-15 X 3 BR homes: 45 BR	Permitted Production Volume (gallons in a 24-hour period)	Radius (feet)	
-150 gpd per BR = 6,750 gpd	less than 14,400	150	
(design flow)	28,801 to 57,599	200	
-6,750 gpd X 2 = <mark>13,500 gpd</mark>	57,600 to 86,400 86,401 to 115,200	250	
(production volume)	115,201 to 144,000	350	
	greater than 144,000	400	

Community Well Water Quality

EXTENSIVE Water quality sampling during <u>new well permitting</u>

- Identifies constituents that exceed drinking water standards
- Defines water system treatment requirements

<u>Scheduled and routine water quality</u> sampling after first year of CWS activation

- Monitors treatment performance
- Assures public health standards are met
- Schedule varies per parameter
 - Weekly
 - Monthly
 - Annually
 - Per 3-years
 - Per 6-years
 - Per 9-years

- Inorganics (Fe, As, Mn)
- Radiological (U, Radon)
- Microbiological (E.coli)
- VOCs (gasoline, solvents)
- SVOCs (pest/herbicides)
- PCBs Dioxins
- Microparticulates
- PFAS (per/poly-fluorinated)

Subsurface Systems Bureau Lot Sizing Requirements

Robert A. Tardif, P.E., Administrator Subsurface Systems Bureau New Hampshire Department of Environmental Services

robert.a.tardif@des.nh.gov

The Subsurface Systems Bureau is responsible for the review and issuance or denial of permits that govern approximately two thirds of all development that occurs within the state of New Hampshire. In particular, the bureau is responsible for the following activities:

Reviews applications for the <u>subdivision of</u> <u>land</u> and the design of septic systems (Approximately 7500 Approvals Per Year) Performs on-site inspections of all septic systems installed in order to ensure strict compliance with the approved plans. Also performed site check for every lot prior to subdivision approval.

Implements and administers the program for permitting (licensing) both designers and installers of septic systems. Subdivision applications must include test pit data stamped by a permitted designer. Investigates written complaints received by the Department of Environmental Services relative to situations which are or may be causing degradation to water supplies, pollution to surface and groundwaters, or creating nuisances and potential health hazards.

Coordinates other necessary permits involved in a particular project or development.

AUTHORITY/HISTORY

1965 RSA 149-C "Island Rule" Required that any person proposing to construct a sewage disposal system on any island submit plans and specification for approval.

1967 RSA 149-E Required that any person proposing to construct a sewage disposal system within 1000' of a surface water submit plans and specification for approval 1971 RSA 149-E Amended to remove the term "Near Shorelines" thereby requiring that any person proposing to construct a sewage disposal system regardless of its location submit plans and specification for approval

1989 RSA 485-A codified.

RSA 485-A:2 Definitions

XIII. "Subdivision" means the division of a tract or parcel of land into 2 or more lots, tracts, or parcels for the purpose, whether immediate or future, of sale, rent, lease, building development, or any other reason....

Allows for Lot Line Adjustments under certain conditions;

- Includes condominium conveyance, or other conveyance thereof;
- A re-subdivision in which previously approved lots are grouped together to form larger lots shall not be deemed a subdivision.

RSA 485-A:29 - Any Lot Less Than 5 Acres, That Is Not Served By Public Sewer, Requires Subdivision Approval

 Lot Sizes Are Determined Individual Lot Characteristics (Soils, Wetlands, Slopes, Ledge, Water Supply...) And Are Based On The Lots Ability To Support/Manage The Sewage Load

Lots Must Support A Minimum Of 600 Gallons Per Day. A One Acre Lot With The Best Soils Can Support 2000 Gallons Per Day

Determined By Using The Formula
 Lot Size = (Q (gpd)/2,000 (gpd/acre)) x sewage loading factor

Table 1005-1: Minimum Lot Size - Residential, 1 to 4 Bedrooms; Sewage Loading Factors						
Soil Group→	1	2	3	4	5	6
Slope ↓						
0-8% or	$30,000 \text{ ft}^2$	$39,000 \text{ ft}^2$	$48,000 \text{ ft}^2$	$43,500 \text{ ft}^2$	90,000 ft^2	See (c)
A/B	1.0	1.3	1.6	1.45	3.0	
8-15% or	$33,000 \text{ ft}^2$	$43,000 \text{ ft}^2$	$53,000 \text{ ft}^2$	$48,000 \text{ ft}^2$	Not	See (c)
С	1.1	1.43	1.76	1.6	Applicable	
15-25% or	$36,000 \text{ ft}^2$	$46,800 \text{ ft}^2$	$62,000 \text{ ft}^2$	$52,000 \text{ ft}^2$	Not	$\mathbf{S}_{22}(\mathbf{a})$
D	1.2	1.56	2.08	1.73	Applicable	See (c)
25-35% or	$39,000 \text{ ft}^2$	$50,700 \text{ ft}^2$	$72,000 \text{ ft}^2$	$57,000 \text{ ft}^2$	Not	$\mathbf{S}_{22}(\mathbf{a})$
Ε	1.3	1.69	2.4	1.90	Applicable	See (C)

The Minimum Lot Size For Lots With On-Site Waste Water and On-Site Well is 30,000 Sq. Ft. (0.67 Acres)

The Minimum Lot Size For Lots With On-Site Waste Water and Off-Site Well is 20,000 Sq. Ft. (0.46 Acres)

The Minimum Lot Size For Lots With Off-Site Waste Water and Off-Site Well is Determined By The Municipality.

CONSERVATION SUBDIVISIONS

Conservation (a.k.a., Open Space, Cluster) Subdivisions Allow For Smaller Individual Lot Sizes.

Conservation Subdivisions Must Include Conservation Land To Account For The Sewage Load Not Supported By The Smaller Lots The Total Combined Land Area, i.e., Individual Lots Plus Conservation Area Must Meet The Sewage Loading For Proposed Use.

Well Radii Do Not Have To Be Wholly Maintained On-Lot.

Conservation Area Easement Must Be Held By A Third Party, Many Times The Local Conservation Commission.

<u>CONDOMINIUMS</u>

Any Lot On Which Condominiums Exist Must Be Able To Support The Sewage Load For The Proposed Development.

MANUFACTURED HOUSING PARKS

Manufactured House Park Sites Shall Be At Least 10,000 FT²

Any Lot On Which Manufactured Homes Exist Must Be Able To Support The Sewage Load For The Proposed Development.

Quick Note on Innovative Technologies

Innovative Treatment Technologies Allow For Smaller Septic Systems (EDA), But Do Not Allow For Smaller Lots (Lot Loading).

Conservation Subdivision Design:

A Flexible Design Approach for Siting Septic Systems and Wells in Rural Subdivisions

Copyright 2022 Randall Arendt rgarendt@comcast.net

Second Edition

RURAL BY DESIGN

PLANNING FOR TOWN AND COUNTRY

RANDALL ARENDT

Conservation Design for Subdivisions

A PRACTICAL GUIDE TO CREATING OPEN SPACE NETWORKS

Natural Lands Trust, American Planning Association, and American Society of Landscape Architects

GROWING GREENER

Putting Conservation into Local Plans and Ordinances

Randall Arendt

Natural Lands Trust . American Planning Association . American Society of Landscape Architects

This is a *Density-Neutral* Design Approach

Lot count is determined either by a realistic "Yield Plan" or by a formula based on net buildable land.

Build-out Scenarios and

Potential Greenspace Networks

Primary and Secondary Conservation Areas

Lopend Primney Goostrakets Alterial Salls Sispes Grader Than 255 Bydele Salls 100-Year Readplain

Tarman & Lee Associates

Secondary Constraints Conditional Solis Dispos 105-295

Natural Lamb Trust

114

Conservation Area Mapping West Vincent Township Chester County, Pessaylyunia Areas with furnals of Areas Cultural Researchs Wooded Areas Fastalls I Areas and Disater

W

....

1811

Choosing which Site Features to

protect, and which to build on

Prepared by the Montgomery County Planning Commission, October 1990.

Site Visits:

An Essential First Step

with Applicants (and abutters)

To Discover and Evaluate Special Site Features

Four-Step Design Process

Identify Potential Conservation Areas Locate House Sites Connect Homes with Streets Draw in the Lot -Lines

Compare Two Sketch Plans (prepared by a LA or Planner)

BEFORE

"Preliminary" Plan is Submitted

PB decides which one better complies with Bylaws and Comp Plan policies

Ways that Conservation Lands

Have Been Used

Acres Saved with Conservation Subdivision Design (as of 2014)

Municipalities Westborough, MA 448 acres Westford, MA 650 acres Hamburg Twp, MI 750 acres Hopkinton, MA 875acres

Counties Cherokee County, GA 1,374 acres Waukesha County, WI 1,670 acres Hanover County, VA 5,550 acres Calvert County, MD 7,765 acres San Luis Obispo County, CA 9,000 acres

Nationwide Estimate: 100,000 to 180,000 acres

Well and Septic

Jarvis Farm

Westford, MA

(Lots range from 0.5 to 0.6 acres = 22,500 to 26,000 SF)

Off-Lot Septic

Can be either Individual or Shared Systems

This flexible design approach allows septic systems to be located on the deepest and best drained soils on the property.

This is not the case in conventional subdivisions, where lots are spread out across the entire property, causing some lots to have much more marginal soils than others (they all pass, but some just barely). Strathmore Farm

Madison, CT

Condominiums on EUAs of 10,000 to 12,000 SF

Off-Lot

Community Septic

Partridgeberry Place

Ipswich, MA

Multiple Shared Septic Systems

and Shared Wells

Long Hill Farm

Guilford, CT

Condominiums on 5,000 SF EUAs

Chadds Ford Township, Chester County, PA

Most homes on small individual lots

(with mostly shared septics, but with some individual off-lot septics)

Central Septic System

and Central Well

- 115 acres, 85 acres as open space (74%)
- 42 house lots (1/3+ to just under 1 acre)
- Community Leachfield and Community Well

Deerfield Knoll ("Detached Townhouses")

> WillistownTownship, Chester County, PA

Condominiums on EUAs of about 5,500 SF

- Innovative Land Use Planning Techniques A Handbook for Sustainable <u>Development</u> - NH DES; NH Association of Regional Planning Commissions; NH OSI; NH Municipal Association, October 2008
 - Conservation Subdivision Chapter
- <u>Conservation Subdivision Design. Minimizing the Impact of Subdivisions</u> -Carolyn B. Russell, AICP, NH DES
- Rural by Design, Second Edition Randall Arendt, F.R.T.P.I., ASLA (Hon). To purchase a copy e-mail <u>rgarendt@comcast.net</u> or go to <u>http://www.greenerprospects.com/index.html</u>

 \mathbf{R}
Questions and Answer Section

 If you would like to ask a question, please either raise your hand and we will give you the ability unmute yourself or type your question in the Chat box. If on the phone, lines have been unmuted

B

- All Conference Session slides and recordings will be available next week on the Conference webpage
 Feedback Encouraged!
 - Please fill out the Anonymous Evaluation Form that can be found at the link below

Click Here for Feedback Survey